{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# What is pandas good for?\n", "\n", "Working with (large) data sets and created automated data processes.\n", "\n", "Pandas is extensively used to prepare data in data science (machine learning, data analytics, ...)\n", "\n", "**Examples**: \n", "* **Import and export** data into standard formats (CSV, Excel, Latex, ..).\n", "* Combine with Numpy for **advanced computations** or Matplotlib for **visualisations**.\n", "* Calculate **statistics** and answer questions about the data, like\n", " * What's the average, median, max, or min of each column?\n", " * Does column A correlate with column B?\n", " * What does the distribution of data in column C look like?\n", "* **Clean** up data (e.g. fill out missing information and fix inconsistent formatting) and **merge** multiple data sets into one common dataset.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import pylab as pl" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, a short recap of the video session" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The two fundamental data-structures in pandas are Series and DataFrame:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1\n", "1 2\n", "2 3\n", "dtype: int64" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s = pd.Series([1, 2, 3])\n", "s" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "a 1\n", "b 2\n", "c 3\n", "dtype: int64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s = pd.Series([1, 2, 3], index=[\"a\", \"b\", \"c\"])\n", "s" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "a 1\n", "b 2\n", "c 3\n", "dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dic = {\"a\": 1, \"b\": 2, \"c\": 3}\n", "s = pd.Series(dic)\n", "s" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s[\"a\"]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
abc
0135
1246
\n", "
" ], "text/plain": [ " a b c\n", "0 1 3 5\n", "1 2 4 6" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dic = {\"a\": [1, 2], \"b\": [3, 4], \"c\": [5, 6]}\n", "s = pd.DataFrame(dic)\n", "s" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 1\n", "1 2\n", "Name: a, dtype: int64" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s[\"a\"]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s[\"a\"][0]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['a', 'b', 'c'], dtype='object')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.columns" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reading data from file\n", "\n", "Now assume that we have some pressure data obtained from a sensor, as shown below\n", "" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(\"data/pressure.csv\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0tp
000.000-1.077684
110.005-0.933488
220.010-0.956377
330.015-0.963243
440.020-0.864824
............
5995599529.9752.296034
5996599629.9802.312056
5997599729.9852.488295
5998599829.9902.570692
5999599929.9952.472273
\n", "

6000 rows × 3 columns

\n", "
" ], "text/plain": [ " Unnamed: 0 t p\n", "0 0 0.000 -1.077684\n", "1 1 0.005 -0.933488\n", "2 2 0.010 -0.956377\n", "3 3 0.015 -0.963243\n", "4 4 0.020 -0.864824\n", "... ... ... ...\n", "5995 5995 29.975 2.296034\n", "5996 5996 29.980 2.312056\n", "5997 5997 29.985 2.488295\n", "5998 5998 29.990 2.570692\n", "5999 5999 29.995 2.472273\n", "\n", "[6000 rows x 3 columns]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "t = df[\"t\"]\n", "p = df[\"p\"]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 -1.077684\n", "1 -0.933488\n", "2 -0.956377\n", "3 -0.963243\n", "4 -0.864824\n", " ... \n", "5995 2.296034\n", "5996 2.312056\n", "5997 2.488295\n", "5998 2.570692\n", "5999 2.472273\n", "Name: p, Length: 6000, dtype: float64" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACB6klEQVR4nO19d5wkR3X/t2Y2XU66pNNJp5zzcUogJCGEhAQiGZOTMcEYg8NPgAMmB9tEg7GJBpMzCIFAEsr5kHTKuqy70+WcN9bvj+rX/erVq+6Z3Zndnbv+fj772Zmp7qrq6qpXr1401lqUKFGiRInWRWWkO1CiRIkSJYaGkpCXKFGiRIujJOQlSpQo0eIoCXmJEiVKtDhKQl6iRIkSLY62kWj0kEMOsfPmzRuJpkuUKFGiZfGnP/1ps7V2uvx9RAj5vHnzsHDhwpFoukSJEiVaFsaYp7XfS9FKiRIlSrQ4SkJeokSJEi2OkpCXKFGiRIujJOQlSpQo0eIoCXmJEiVKtDhKQl6iRIkSLY6SkJcoUaJEi6Mk5E2CtRY/XrgaPX0DI92VEiVKHOAoCXmT8JuH1+Ganz6ML928dKS7UqJEiQMcJSFvEnbu7wUAbNrVPcI9KVGixIGOkpA3Adv39uD6R9cDcCKWEiVKlGgmSkLeBPzdjxfh9iWbAQAlHS9RokSzURLyJmDdjv3pZ4uSkpcoUaK5KAn5IHDv8i2Y9/7rsGTDLrXcsM8lR16iRIlmoyTkg8CvF60FANyzfIta/vi6nennko6XKFGi2SgJ+SCQEmdj8i4rUeKggLUWn79xMZZu3D3SXTloURLyQaCt4gj4wEAxv12KVkoc6Ni5rw+fv3EJXvO1e0a6KwctSkI+CFQTQt7br3ttnn/0tPRzqewscbBgd3df09tYu31fadKr4IAm5Fv39OD4f/4d7l+5taH1EkfeH+HIJ49tz76Uc67EAY6+geaHoXhw1TZ8444VOP9Tf8SHr3286e21Gg5oQn7fiq3o7hvAV29b3tB6qxU3bP0RzsCglJ2XOHgQY2gaiZf+11346G8cAf/fu1Y2vb1WwwFNyIkdbjRZTTny/sgEZg2WDHmJAx29CSEvJR4jhwOakC9cuQ0AsGNfb0PrrSSEvC/Cifh25OXsLnFgI8rQNAlvu/CoYW2vFXBAE/Kv37ECAPCnp7c1tN7UaqUGIl2S8RIHOkjEOFyK/bEd1WFpp5XQMEJujKkaYx40xvymUXUOFdMndAIAJo1pL7iyPlSLOHJmXz4M4sMSJUYUxNAMg84TwPDI5DVYa/GVW5YNi3VOvWgkR/4eAE80sL4h4w3nHgEAeMX8wxpab7XAaoWLVrbsLsPYljiwQQfTmPK/0egdZlEO4bM3LManr38S53/yphFpPw8NIeTGmMMAXAng642or1EgWXalwR6YJFr56m3LcUcS5ZCDN3fXMt2Nv0SJAweOsA4Xp9w/XKy/wE8WrgEA7Nx/4HLknwdwDYDoCBtj3maMWWiMWbhp06aGNLpx5/7cclI0NtpqhThyAHjdN+5tcO0lSoxOfPr6J/HoMzuC34db0hETaTYb6wvozUhiyITcGHMVgI3W2j/lXWet/aq1dr61dv706dOH2ize/n8LseATN+G+FY119qkFbZX8raHRJ4ASJUYaq7bsxVduWYar/vOOoKwREpX9vf0157cdKRk5oaM6+mxEGtGjCwC82BizEsAPAVxijPluA+rNxe8f2wAAeGBV3CKFJljD6WpBhSUdL3GgYVd33IS3EdYqJ/zL9bj4P26p6dqRkJG/+wcPpp8vO3nmsLdfhCETcmvtB6y1h1lr5wF4FYA/WmtfN+Se1Yg87vi6R9Y1p9ECFqRaUvISBxiqOeuMi6z/59Zlg27jme37arpuJGTk1yahqwGXWH20YfSdEWrEUdPHAQBOOnRi9Jon17vED40+iRXVJ0UrtURJLFFiNKO3Lz6HOUf+yd892fS+jJSMfDSjoYTcWnuLtfaqRtYZw7RxHQDybVdfc87hABovUyvy1qyIUR0us6wSJZqF/7ktzmnL6b1jb2M9qSVGWkZ+1WmzR7R9DS3LkVNgqjwi2ZsoT/oaLFMrrs3nyEd64pUoMRSs37E/14xWLsHNe5rrO9EMjvyRNTuwaPX2mq41o1B02rKEnGhlntiCXngtrvT1oHge+Rc0uv0SJYYT537yJmzd0xMtl8rOdnkkbTD6lDwASzbswj/+4pFBxzZ60ZfuwNVfvrOma0fKjj0PrUvIE8S43R37erFq614AjY+XXDRZZHHJkB8YuOHxDbnpzK5/dB225RC8ZsFai0/+7omaOcpGQ87vJtNxdc0//3O34fv3rsLqrbUpTBvd/kijZQk5KdFjopXLP39bGixruAdedmk0vvgS9eMvv7MQl372VrVs254evOO7D+Avv7NwmHvlCOn/3Lq8Zo6y0ZCMTbMZ1jzRSrXafLHHaFzPLUvIUxl5ZFDX7ci8sBotIy8Slcij5nBbrdy5dDMu/eytDQ/fWyIOYiiWbRr+BMTNDpU8c2Jnfvvie7OV+3mEdDjW2mi0mmldQk4ceQ2D2nirleyzFlIz4MiHWUb+r79+DEs37sYvH3xmWNs9mEGb+0gowpo9uyaP6chvX8zvZnOsWq7ccck6jOXRbSRKjrwJqEWR2OgdlNemcfvyl+HmyEmO+807VwxruwczaB4URG9oCpqtTC/am0KdUH39qfdEoS2nomQvjURJyBsIcroZCY6cT9TegYFgIo40R/6ys+YAAF53zhHD2u7BjGyOjQBH3uTpVXTKCEQrda63eq/XCD95nl72udvw9dsHn6N3yYZdhRtLKVppIOoRrTTeasX9/+uLj4G1YR8CGbnSxT8+uQF3LQ1D4DYCE7tcIo08t+oSjQUd6Tfv7sbDa7YPa9vNJuR8GmmiRHnirJsw19kflSNnm83Hrht8WoTnf+42/ORPa3KvKTnyBmIkOXJCexIFLdihk68vPv1QALpo5S3/uxCv+XpzQuC2V+mYOfrsXVsVnEub9/7rQksN9v3FXxpe65Fmp1jjDLnGjQ6VI693I9LqbyTP8t17ns4tLznyBqLI/JCj0QNPhLmtqm8mFsDcqWNw0fHT1fJmo5oY8o5UJpUDEXKayTkly7v7+pvcowy8K2d/9IaG12+YuEhjSqRMvF5RIt+I8sQaXe0VPGveFPWaRoaO3l2QOKJ0CGog6MXVokhsuNVK8p8iL8qJa62FgclSwg2zjDzlyEtC3jDIkZRjK8vXbGu+Y0raNptfW5rgkPT0lj3pZ5UpkspO5ZprF63FjxeuVuvny+M7dz8dJeZvu/BoTOhqV0UrjRQjLt+8J7d8GAxj6kbLEnJTh2il4bFWkupo8ljxYi3ccbSezaaRaKuQyGcUzrgWheQ6N4tcrLJ8ON+5bGr9jsZmsulo8+Xi8tlqEa28+wcP4pqfPqzWz4fuX3/9WEBIibBXjPvTRSv5hPzWxZvwV9/LzX1TM0qOvIHIRCvF1zbLaiXOkTvbhZHiyEnkU4pWGgf5Cn//2Prc8mG1Jxdt7+mpL6fkt+5cgXnvvw679usOZM+aN8X7LuczrYe5U8eo5UWQMv7uXp9Q0vI1MKgYo5o3FnHkb/zmffjtI+sbssGWMvIGIstkX7w7xjjTnft7Me/91+GnBVpqCXqN1Ac5sRxHbhhHXlf1Qwa1qwUXKjE4yHcsE5o025Z7d3cfdkYIrWy7Xnnxt+9aCQDYtEuPWlgRzxrohJKvr1ngzF3rne+SLsoNJc29m5xytaGuVbLSCCJcWq00EJn5YfG1sYFftcUF1arb7tRaGJNxXcFR01oYZJOr0Yt8T3cfvn778ih3QRzOvt7hU7gdbDhhtp/QZKhOMUU466M34LQP/UEtC0Ub9VFSmsexHsuMV5pyH4ifUDm0OStl4v/5x6Vq/RXjAnJp9de6edVChF+94HCl/uzzaIxm2sKEXOeGNcR24W/esQJAlkmIY8vu7miA/AEhOlGtDw0/NTT2xX/xpiX42HVP4DeRVHY0JN+7dxX+huUaLDF4FMnAA6uWBou18hITy741WqQmxRYx0QqJ9GoJLc0hf9kvGBAe/qBijFq/PDXE2y/e5DrbQrI4fUIWb2YUishbl5A3wo58Y+QoCQBnf+xGnP6RGAdkk0mV1C9XcULoK02Ske9MzKN2RoJicQ7n1yzXYInBo9D8UJCj4Tx+DzXaJpHA2DQtTF2YfG2rgXHRymS7zztxplqeilbUPmafDxkfjw1Ty9hozGFHQtwnjWkvOfJGgl7cHUs3Y+nGkKPmiHHkFx53yKDatta1HxWtJIS+2iSrlcQPKWqmNQrnWUOxZXc33vvDB7G3TqXeUFBkKy1f8XAquOU8qFsObPR6CFWZujCyiZH/Qt6zaxyxbHf2pC5RTt10zJNGSPlmM0vcn9f3eq552ZlzcMUps0oZeSNB7/K+FVtx6Wdvy702NvCf+O3gEsU60UpGqAOGXFqt5Lz49/304bqDBpGDRqzaUTjPGoq/+/Ei/PKhtfjZA8MX3TGQQ0s78iAC4PCdv2XfBqvkrnUDkPOZHrUW0Yo2LLWedogj19YTtxLKG/rBcuQDAwCMO2WPxvXVuoS8jmuL5GLHz5xQZ9s2eanuu2p+yO3Iczr7o4WrcduS+mKukA3zrx7SCVmzXbZHEn/7o4dw6+JNAHQO8qQPXo+3/O/9DW9X+gqExEaUD6PpZxEhLEJm5ZR/wrsySToczPfkfxYaok6OXHyP6R8qCSEtslrJE32oMvoaw/BWTPxEMNJoXUJex2BK7glwJk6XnjgDAHD0jHF1Nk7OCTHzQ5seA7VyiQdXbaur+bEdbQCAcZ1tavlo5BgahV+wGOuaUm9vTz/++OTGhrdbJAMPiMEwLvZA7FPnBCDZ9n/84Sk8vnZnUG4BzJk8Bs89Vg85kflVVNT+FPWtaOxSZWeNopWhyui1A81AYolWjdixjzRal5DXca22C7/uG/fhxifcgjd1hh4dsDZ1TgB0DsLUYbVSrwz9Zw84u/djZ0ROEqNwojUD962IZ3ZvNIpk4ENVOA4FsqV6kyvQPL518Sb82X/fFZQT4SLlvWSq6dlrUnZqYotC0YoDnXI1QsqjMubL6BVCHvRHJ/ZkclzKyBuIIo58zmTnZfai0w9VB54nqh1MtDZOqCNK/JqtVnrqPIaffKizYZ7QVcyRHztjfF11txJ+/9iGYWurSAZeRIyaiaGGkeXmhXt6FN+DZL4ToQ7FI6TsLCbkeiIWKXMXhDxpzhgDY3QZdRvL1ZnHGGm6i1pEKxYWFePiJ41GPqmFCXnxNS8/6zBMG9dRuKjqzmiCTF4G6J5uzbRaueQEJxK6c+lm3Ldiq9K/rL02aXJwAOGvLz5m2NoKCHWBsnO44+tw1C0jL7DBTud7xJOZmqOwznnr6TFFdCNZ4phVDDnZqREYGX1uBkc+kOq9BnfaenL9Tvzp6a1Ns7Rq2VVeRHtt4n1ZrRQfheol5CQvi8nIAZtrtSIX/SlzfC/BIlC9C5/ehlf+z91BOa++2Yl5w7YtfvqnNbkOLI3C5LHtTW+DECYL0YkZYVg5cml+WOcJryjx/ACtpdR3wy+n5rP5Hq/rHd/9E+4UCVVkb2MhACrJelZFH6yWPNsG9UQgfoqLVkxitVL/u73887fj5V+5Gyd98PdYuDJkvoaK1iXkBVJyC7eDt1VModVKEaEN6k4qjyo7bb7VShF3N1Tw+odbnnfdI+vwDz9ZhC/9cUnT2wrN4Ib2rFt2d2NFJIRprSZyLzh5ptq3ZoL6dt5R05K+1beJFgWccn4TJrUnj3HMtbjoAwhiGxXb6CccOXl2KtXzW+pWttbgzGUZ8zZUZef9K7cN6X4NrUvICzly1MyRSzpay3tyR033WZORG2aeGHJv/vd6lVOFzw6LzrYKrjpt9rAT8l2J1+mGnXGv2UZBLvieIQYJe86/3YyL/+MWtaxImUnlFx7X3GQiGpNB8+nchJAPRUauIbXYIIefwGrF/ScxXtGGyi2PgBrGNvlvjAsetmNfbyCi4HfkyugHabVC4qVqZCOpB80wD25dQl5Y7pQTjiMv4rD1iRMDHTXjHLn1HIZii55Qb2yMwme3mXJquEPo0jMPh2hBEoyhtrlXU/RRWwUKMSpujxC7RkGbK/RLe1u+PXgMhRw5kMQOct+1RCq8nqHm7IyNrTEmjdB40gd/r/YBGIz5o/v/F88+EqfMmRiRkdtcGfnAgMW2GpN6HHVInebONaB1CXnBXCHlRLVSgbVFmuz6RSuejFzhIIxBjnJIEqB6OfLijckdhSvDniWIuA0ykWwmJOFupn1vIbEh8UKOU8xHf/M4PnLt40Pqx5duXhp4btJ8aE8TioTz+SVfvtOz1OLgNtgTNUsoS8r9fMakLTLfi0Drh+KZxNajAXD0dN0Ky1rg/KOn4fXnHpG7kWzZ3a2G1ABcYKxqxLyQxEu0puUa/NLNS3HmR2/Axp3FST2OaYIlWQsT8mJiC5h0YeWlb4od5aJ1M1MkQBGtJIS+Vo68XsVgTZsYHAfVDM7w09c/iZue0E3/dhXkO2wkYmZqzWzrfZefAEDbRNz/PPHCN+5YgW/euWJI/fjiTUvwju/6mW7S00CaQ9YfiCfX78JDq7fj6i/rSaE5Rz570pigPBOtxB3ggPxNrBZ8/CWnqBwvfasYg188qDMIxDwViVLf+b0H8PkbF/v3EscPRJWZqS19ZE3f8LhbD2tryM7UjNNq6xLyGq7gtt6XfvbW6JWasjIPxO1nMdGViZdH6EXv6xetFG9ixJE3Q7TylVuW4S++vVAtO5pxG8s37W542xyhq3jzTx+TxjhLmRjX2DFEYlYLyJGNQE2N73J929XdJ8rz+yKTZEhIv4nQ9NL9J/PDIubhylNnq/cTcxRXdgLbIqGl6RQaU4ZyfDES75wsc9T+W+Qyb3SaqIUpG9eh+38MBa1LyNnL1mR8xBUXTVKgmNBqdcMLmhUuaoOM0EvuLLRaCV/+I2t2ROOhF2807uHbalD0Nhr8mH7JZ+KbZyMQM4MDgH/+5SMNzZAkY27HxQtEzJp3PJCOYDRfKY62DEnR1e68Hse0+7k3CfydaXM/PYFGdELpaST1/MyfczLeOA+KVa2E8cY5xxwD3VKtDMIvJBXdONGJKgO31mPeZBu0we+IhJbmmDt1bF39qwWtS8jZZ5WQw+ci8lAk+tBapwA+gG5u5bnoF8jItXn/oi/dgVd/7R619VpoMx2Fm5nu7e5loYv88CYdjo/rd+9ZhYciMuHBQMqBY+aHMULfSLz+3CO872n0wWgO2YxQaii2WvGvi51G2moIYwsAh072xTdUHXHEMRf9vCxAbr2baHREDul/IDly3U49sWOPbGa0uX7n7pV4SklUQ+hokoNe6xLygnVCR63aOPI6RSsD+XbihTJyQVtjC+/xdYoXHGo5MVhUKiZxnsi9dEh49dfuwW1JJEJCMwlYEHdbHvHF9bVmjakFXEbq5LDCRT/5SuKFZopWpLcuzYdK5NhP32PvhhNybe470YqJMi4poSVz24Jn72oX/Wdjq3HEaX0G+PhLT9ErJTvvGhx2LjsplrgivmYcRx5X+NLvty/ZjBd8Ph5We6gmsjEMmZAbY+YaY242xjxujHnMGPOeRnSsCHwYNa6TFH5RNoQhZoEQb1tEN1Tu5xM/NG+MTFTW94IO5IKevRZnqKHi4TXbve/NNHeUVRdtwDLXZO3t6BwZwBVqenktgaOGig7hiukp64wexA2Iixw4IdffnzuBps8WCU9AhLBoDsTGDsgXB1aMwWvPOQJ/+ZwjAzFRegKvgSPnadu8/gNR0QrpCWKbZeNYhsGhERx5H4C/t9aeBOBcAO8yxpzUgHpz4duN6sc9Y0w0HRqHxlHnt10Qxtb65okxBwqCnPhFE7GYztsod9NodPdJzrSJhFx8LzIbHWxPdM/BjFi1aRx5KkOvTbzQSIQcpS5y6u23+MKNocct3/B0+bB/Ao1FfqRTaBHTKcdO9j8extaho60ScLbcPHDA5lu1heaZ1L4LVxB10c9h3swgmYZGYciE3Fq7zlr7QPJ5F4AnAMwZar3F7QJnHT4Zf/f84wCE3pE0zLXYdWp24LEygCZ2gfkhk6d96NrHvX4UJfItOhoWmV7SwhsOZefUcX5+xGYSsCJXbtny4DPlaBHy3H8iVjFikJoANtF+Pyafp/SDeTqZzwnTOwAeOxlzT/csNnJk2JUalI1RGT4KlJ1JPzuqVfQPWO/98njh7rvfZjs7xcREctR+PPph3ASzVjp+xLTGKzqBBsvIjTHzAJwJ4F6l7G3GmIXGmIWbNm0K7q0XJL4geVsgk0yIWSc7gsW4xdjEUuuFr2UHdNGM04Bnvy1lpnhU/SUnzEBHW6XQa1CiiDaTTJPkfc3kkucJL7V6navqgawqPOL75YMN3BXjSoFERl7VMrknHHnEKaeRiIniyPNQjkP4PT5uUcYFxcr7WkUbeXbitSg7O5M1z7nyzERSb4NzzDGHqjxlaWZyrI9BreqYZjFWDSPkxpjxAH4G4L3W2kBLZ639qrV2vrV2/vTp04fcHokvUuWSwpEb+C8lpmjIk1FHvbwqwPbEPPBbwsnDusY92WMbo+o0cZ534gx0VCvBUbSIq61F0espWxtKTPNPE6Ecu2FNh8GNCqyBBqtYKtq8tbAPKaGvoOnpwDTPTde3JBZIwTvJ22yjYV4ZRx51oUdcxuz1P7IBkww6dkLNOPLQZpt4+pg3NSe0vZGNIjV/VEUrvgmmvKTW5DTNmhYNIeTGmHY4Iv49a+3PG1FnEWgHJplkKDNzRyGekZtfQ0ec846aFr449vXED16vtO047rXb9wEA7hUxwRM67ilkyGEAYBxUJHVV0bFcEjSNwzIGqDbBFE4OVZGbvGx7b08fvnjTkroDhWlt54nEgPodrQja+JO0hXQj8VCrBm2VSlM58nADc/9JL1O0wcU2Ie1aIFtLcU/lbCNpq8FqJObIRQr6qAw+aV9zvqE+xvRWlVyOHGn7cTvyTJkMaBy/8qAKRi1HbtzofgPAE9bazw69S7WBxBftEW8zOgq9+YIj8ZxjDwHgv/iutipecPJMzJrUVeghqEVaqxhfPuwRU3EMc/3j3IO7lmRu8uXWy5GHUiXf9LKRk6dIvl9kWfLFm5biszcsDkKZ1oKAs8wRiQGDF63kceSAUXUPXCFXaVJoBEK40dB8MmpyYnl1XkiKqMUGcuzIk//E0Wrjx82AQ/PC7P6Kcj+XoQOZ41N3nyJaKTAPBDQZuTjRyPHjopeojLw2St6sk1ojOPILALwewCXGmIeSvxc2oN5ckPiCRCuhstOmcuIXJi7BvYKYkgInloOQsHSj72pOys7zjp6W/ra/169bHrU4d+jJWzUtfZHVSgHXm3EPySancMX/OViuWHyvl/vbusdFr7t/EMH1+Qbb2VapIapk42TkGcftTjpxYuY48jxCPlS9QYyjJhl5bJOJ3W+txVHTx+FN58+LbmKciH3mD3qsktRFXqmD2/THlLUpR5+zUQDAw2t2APCzDWV6KVLIivbzRCts/DTGyhP9GL3+WjnyjbuaE965EVYrd1hrjbX2NGvtGcnfbxvRufx23cshTzp5jCYuAtBlagOWK1d0ixd+rV+3TY6B2fD1KNwBB2+DOzhoE7+QIw/6pzw748hl/V+8aSk+c8Ni/GwQXHFhOFdxvSwnJ6efP/AM6gU1/YErTsDhU8cWByNrhtVKTCHHFX4FcuKhil1i9vMpY1JwUlFTE0K3GKFybke+fud+rw5+Gok9O+fI81zwKzkWQURE6YTNPTQzjjx5Rila4RtJVLSiKzvpG0+uEXDkGFm0rmcniVZSTzqFGCej294Wcu1pfGHNuUO8JOkdapEpvQi9AwNBOUev0LADjIOp02rFWmDK2HZ84IoT0meR/Xcyct2CgmJd5MXfzmubI0+/AISL9iVnOMvUl51Vv4Wqv6C0Bed/l6KV7r5+vPXbC7F0Y9yFGsjPIhMTh3FiVC1wxIqZ+H3xpiVYvXVvbt+AuF7CAEly4vwNLlwrNno6pPqJyBG6+7K5IzlWrY5qHkfON8k8ZWfyfUoi0vRP2H5Qq7w1FIveSFYvMTt8A2BPt3vu/X3+2skLHzAcaF1CnuzAqWilLyQoJN4gT7idLMSqtUjlyEUZ0WPORnyX50HlSRkKZAmC+YkhJAp+e0XOmKnDT0z5hOy0oZXHc40WI7SA8L8XHeNJvjm2Qw/g9KuHnsEnf/eEWsatF7QNUL43KVp5aNV23PjEBnzg54+o9cf6zOt2G7gi1mFyatXzs8Ay5JFnduCzNyzGZZ/T3bs5nYjbWSfK8+Cd+N81GXU6plp2HIvACouvt0z0oRNiuNtx5amzcfzMCdF44MT1Fyk729UTtjtWRHMADFi86fx5OHH2xGiwNbcJx0V2lYrBrx9aCwC4+UnfhLqWmE4AMGtiV/FFg0DrEnKQ1UoiWlG5DPf59iUu2eunfvtkWj5gbZy7giRG4VFMvrafskQKnCN/8RmHujoiMnLNgaKIwJIiNyYPpNNGLIhSzNa2FoT5DYvEUuIImm4uev3v+eFD+J9bl+tts6p0rtj/Lgl5W41xUL5++4owQh9TeGkKPa6w05gD3lfNKua6R9YBAPb16qekdibGyxXrqBucmM+Kso/EBho37RgD3wO0u59z5JyjNUHqRKpjxsROdHVUcz0rKxWDFZv3eO+yFvND2MxZS3tm+qZx3NlGFDMtzb6/6xLHmJ0xd3L4kN4z6XNMcvKNQusS8oTr7UjtyEPujF487YJjGBfoCHkkSI743tMXTjx5lOKLk7/DLFqe4B4Qd6AoIq/udhOVB1L/0mOmGBtKl0XEox6E3J3WN14uNxGTXFf/JoJ0wRuVYNDX//iz0wGEopXUvbqg6R/ctwpfvMl3ZecmflrQLKqSTkqSGPDvkukAgGnCQ1aCO5fleVZqnp1F74QzFjHzQwOTmrMCwG8fXsfK3X8n49aV9TY5IVcVZWxKSGHw5LpdeHrLXhz5gVDNluq8kpR2T23IRGSOeYqfUsmSTNvoeBjbtqqJKsmNAcZ3OhqimTtzxJik7ZHQ1ENF6xJy+HLqwGqFiTeuPM1ZrbzkzEPT8oEBpMfFImWnrJs4XgB418VHAwDmz5sq+hY/BnpH4ZzYEnH4STM0KwUiOEB4onhinVsApP2vB8GELeh7KNbRf6+p7UAkpS+m1M64X7atK381hFY1QnQiquDP3aZ4fvLy+R+7EYs3+HL6Uw6dBAA4+dCJ0T69/cKjMG/a2LiMPBmXQG1RaLWSbUDWhtdnisSMkO/3nHHE2ER0ADGx1ADbCbQTiVR2jk0SM/Br0yz3kVOqBdvock4E7dUKdu3vw6PP7AjKK8akTN0bv3mfeAa/veHOldu6hNwmlhkJoZQLgwg9wOIj8JOYZRlF6uQq+bdLT3QhMTt5aM5kUgF6WNMsbCeSxZPPQUmQaCcmD0wY9mhcCDKbPHXOpPyGtLbF9yKnnLh8vu6mfa44b0HCxdaQG3BsPDTcv3Kb3nZEdEIPXqkYrN+xH798aC1ufDxLhyeJ55+e9uunhR/LHkMmr5pCMiM0MfNDvy5d55NvJ14xJtVvAMCxLBOUb/6oKzst9U+xsZeEWkKKVsYnsb+nj8+iGFL9sQTRnLkJNzrqv0nbuOo/7wjbB7Bpt24+GEY09cspXvm33vQs9f6hooUJuXsxJFr58LWPexl1uBxbi9pGL15VrgRyYJ2DAXiIAL9umhBpHkPPYsb9N0mWoTxZ7/fvXaU8e74yEzbjjoCQiFCGkvnzpgR1U/ux42UQSz20zfTLxXcat6Ubd2H73tqyjvN+AXSS0bkuakMTE9A7GdRpgBGbSsUoorxssZOjys9Zfkkp3uoWnCd1KRZCmRNbWVf2nBT9L38+aydQj5BrRDCRX//uPc8BoJ8wM7+M8BkonrfzepVzKxs7Dfy9Anqo4KJ44XSq0DY67lm6UGzgsv1YlqWA+VM2szdfMA8XnzBDvX+oaF1CDl/ZCQA79wv5U/JSiXMll3ogk5GTS+4eludQzkNNuSQJtTQvpF6N73Q7MZeNcRGBav7IPv/jL0ILC76w6HtQjrjzAok3YozpJ377BM766A1qWcB5RBRHH7n6ZAAKR57MuEVrduCMj+htuD7rXB3ALEciYh3iDOXzkahtMKdeTqg1N3RJbAA/EbXsq/QEpPpifXObt7OqiAWVqtWaJ4x14ltBaSfUwD1emPISNGVhWgd0ZSgXbRAmdGYnEy56AbIN59eL1qr1yz4BmUJXOzHw9h9YFRJyPq/Ihj28xv+ex/w1A61LyC0dobNH+F7CvXLRBZDJ9j7PYjGnR9Wk7Iov3M7qLiZW9E7IrvR/71rJym068bvaqxjTXvU2mczCweha9AJCY4FcQp3JPPX+03SKiRi+dvsKjwhxFJuyue9Z7spBUE3oCkGpW4haP0BXutEmVIto5dITfc6Jt61arYjjPwA8zjwPZZsyaiTNuVjPyJZbjWXCTwtGt2Li0DxDHRF037XQB6misRq6xxOIuYilSiNxX8zc19sEu31T4eR2AJkFj+fZmSwK4tbf/K37wzZSHUJ8I9SmBn/3XLykPGHWnjI/arRQHBRal5AnxJLHGV63w3HcXHQB+Br/9P5kYImjXsUcMejFkRxQE33QpDt2prtm7pSx3v38nXW2V0KbV8StVorjkWebAJBzFI6YYsU4+VpQqDhL/sfivNSasGjVltAxxotbrRFqTuiNFjPD/a9FEXXYFD9udJHnpiQ2gLAtFk0GCz0Zl9g7schOcHkOQarlSfKVMuNoMvBcsQSyDaozErAKyMR9RVnoYzb2cTqX1Q/4Xpocrn7Xv2fY6ZuqiHpupu0bHDLezx4k+0cMmrQbLxKtDDCa0Qy0LiFPiCXPX3jTExuTMp870tbGQMq1xgf3spOdIjMWywTIlFM8YDzJ4wjb9/bi23c/HdSfZTTJ58i1VHGcUMcWZizxhTH677WA7nl3Yk8bI6bRbPM1tvP8z90WhBDgnJNGTPkGaUz8pDMY0QrdQk5k0eQE7MXzuBqyyRgxjr0Tm1BTNRaJx5HH7cjf9pyjkrYVCy82nzTlO5VpkQe5Ejo3Cz10RXF6dWQpcmUqB3fRz5SZeh3pmskxWzUG+MKrzgjvTcfX/b/4+OmBdVFRMDnndFUS8gBELDlH/vLE7Tt9Mcl/2mVPmDUhvTZzCNLrBpDu7ioxYjuzMTK6IW89BL10slopdOCIKG6i8sBkUtO8icVmLrLl1nNXut9mEHcX6Xss5Vk9p4Cv3uY7BmVcr06wCERQYiKyWmzYo27aRo9ZXZSpPuDYYhucNuZsvmixgcK+yWdx/6ObK+OWtXIikoAuI/fETpH3Qlx9vkjM4KOJbiVWTjhj7mTP6ipbEzpJc8/o/vKsxC44JpSBZ+ObbWbSR6EWjjy2yTQCrUvI4QaWe7xNHeeIC1deAG5yz5k8Bicfmr34gQGbxKXQ6nY/UohcTWbonZqtb67GlaEAcNLsiTj9MNY246BqyaiiKafI4gXI09DrHFZMth60G1FaAdxeV+97LGBXzSw5fIcPd2tG0Nq0CIQBZ+rXRwsyJlrh7yweuAlqvHHetoZiS6hkk1Hu9aycKoq5LOu/apUhNlftNECbH6A7mNFjkYx8GYsIyt/L3cu34P6V23DLUxuDPqQy/kj/KgZ4/XnzosmR+ZrrFMSUYi/xuS7TK8asxKToRiI7jSVj0FYNCbm4R5t7pWhFAXGd7Uz5QJwKD4tJcAs/DGzVqyhtMg7G1a0dZeUruXv5Fu87L582vsOT63EtvGZGF3LkurlYJYeD8jksv/6YElRCM0G0gqjELAAyj9bBc+QSgb1yjmiloolW6LrIBsYvjzv0GCzbtBtLN+4OgrC50gynKZs3IZYcQhsffoJTHdiYjFcT1VHd7ZHNNeXIY8pzZGuJ1sRPmNgrey/Z01//6PqgD9mJQn8vdP8mEep1IBv6FDIBM202v38ss91fsXmPeAZSxvrPJ0U3VydhNWhcs/XqLrh9ySYsj4QRSL/niGObgRYm5JlzBoFerOTIARfpb/s+3868Ygx27AtdZukFkdhGi5+cJ++SMvKOaiUa/TCPGBK01Fh5aado0sZEK3RELZKRaxl2PKJilIBf6dhFNsH8Jj289Ew/QiInWOq4Jf/ds8fFH7WIVuKhTIEn17uTwru//yCrm8ozhRn3nA1duHXxiNY1fgrKU7S6NHPx547pTCjgVC1WKyqUTj+6dkd4ndHtzOV6lSZ+VuGYO9uq6O715fTGGG/z5MwTMV+qNRNjTgDg6OnOgCFd9+w0BmSmxN0i1gsHf0fc/6FZaF1CDj+MLZBFZNNkapt2deOWp7KIZSQj/4bIt+nqdojLoP1j3nEzx+Pyk2cFfSO0Vyu+wxAjhurCE/2RpnjZUdh914/CzC44Iu8t4o61LPScWObFHClK1FsLuP4DYPTC6NY+fhJd7aQDtU8a8uomXP9YxnXyU9Zt11wU1Fe0Oac0Q+matNOOp3qjnJ2ibbo3RwHtiFycY+c06JgZ4/HCU2d590tDkkef4aaB2WmlrRq3uqE6Tpo9MU2qTu3T/YROwZEjUWaec2QWKqOrreq3H2Oc0hO8+75uhxPJkPhEWsGdefhkAKFDEgDMS4wePOdDhbFsNFqXkNuMmFCQJOJ65YvRQJ5g45njAb2YQDygeNJxQt3RFnLcvO2HVm9PuTh3v/ufKu0KxA+qhQSTgRfFWokt7MUbdmHjrv2IQZeRi0URCW/QFjvN1MGSxxRXMQ9Cbj2hB0fyr5M4anpm253nBp+HinGxQOYfMQULGFGRiHHNeRtdzKuUy6g1a51UAZ2Mp2aeyEVxPwmshXz5rrTaobUUAz+t5CVuIFItLV8yQsg58koQE90AmDTGt2Tx73d9WLpxNz7zh6fC+pPvv3nYORqRaIaPLwBcdVoS0ZT3Ec5y7e8vO961Lcpc/SVHHsAiI5avOPswzJzYmRFyZQe/8rTZOJot1IGE2H79DfPT3zIFBh1F9YlviYVJ0F4V8jr4hHz9Tp9YelYINYhW1EhuyI8dQhp6rZy+P7Z2JxZ8/KbgXoKW85KPrSaHLhSt1EHJJW3gcuhqxWDtjv0i3Gy2yWiK7PQkEqHkvGuxeCWxxSgtG7raq74lk+TI69AdcNm/5hAkdQex8rbIfJF+B1rkR/4upKKZn1B//PbzCvu/ZU+P996kxY/0DpWEFHC+Gd294ZqbNr4TnwkYOweeHOM//7jU6z9v/1+uOgkAMC5h8qQMXfORSMWdykm0yKKpEWhdQm5D8QXJdNMXxwZuQmcbdjNvMXIQOOeoafjnK08EwJSlYuJrMmg+qTqqFZEI1u+bNPfjyqGKImcuiqud5iPN48gTYkbf/fpRE/JzV8Yj3QHFiXpral/RDQDuvW7e7eK0vO9nDyt9c2KnmJlZ1OnGWlx9xqE4dsb4HNGK3lfJPLhTWkiMCDGHoFwZudGTG8tTUugIRYxJ/J0Qt68/m89xd/cOYBuLkzNgsw3uWUn8Hm7qmxHSjDl69qdvVsupn9ZmY6TZke/t6fft9G12apg92YWtTukBe3cyzrxr3+8B+YZkjKG/SacxjGTGMeinZPpUenYqkFwvVyhypRhhfGdb6k7v7s9MBOUEp3cQk/NKQh2IVlzjKf7hBe641RNMjCTQfQGx08OOxk0A0/KYMrRGSq5nyuF9104TCUcescGvJYQsIUwWgrTtfb1uU/7VQ1m8jUBkFelbrAcDNr5BcWLy2IdfENybLVY35u1VowaWIsQdgnLGHJTRKrLBJf2LldMpSTZBHHk1skuR2IKwZONuPLBqe1aO7AIidlyUyDdgSqywebdPhIFs7Ci0AYWJ0PQT9N6JMHOrkDRHwYDPkVcMIsYNWTmQ6Wbo/clNWjOCoDWviTPlaa0ZaF1Cbv2BaeeEPPmNj9uYjir29PjxG6g4i2lOC72Ag7HhJqJlK0nbTiKm7e+RE6s2qxU1HjqyY9w9wvSR28xq/a+VllLIA69vrO+afJ/6Ht0Ea2va3Ru1N9Y9cvkGqduR6/Vm5ZluISSoWdvjOsNQszLWSruwVKLyv3nesfqzieu0Mrd5VnJk5EaNJUJ15s9ng5ue2AANjmnKIUI2n9vk5sDStJDad+Xu/x+S8L9k+aKJSt97qRtHIuT81EAmkjT+nJB2KLFSpAyerumWhDzlyBUmJWUC3FdN2dlMtDAh902i1u/cn714FpSK0FapeMc1ztGnXohC2RnLZkNHUcLtSzfjsbU7Rd1ZORHyfSn3QAtPN5OT3/NCcgLAF5m8L+2/iZsf1sqRv/4b9+FXD/nZ7gOOPLJJtEcsJOpgyKOWHVq9gE/wNKUfEZTY4xNB04NiZXUDLvm1vJeXB3bOyf/Zk7rU/uedFmg+p+nYImIZ2sCKbPtj5oVrtmUb916P6dEDPnEFbZ4ij4+NtETyypM65kweAyDL6KX5hdA4UgJx/kQBY1Yw53gYWyAMQyBl9JqPRJ5ohVDKyBVwQgy4I9PqrfuSMv/FAGFuTy4ekZl0Aq5SsZXmbdMLz3Zwf5OhCbmPHQOR9L+/32L5pj0ewQw5cp1745uJpzyCL1qJcaa14J7lfqYc3re8fKdyc8zur31TCR2SsgV917ItwfVcBKGFsc1zuqG+0LgVJT947nHTRXydrG0gPKVJYhrbKDRK7m+eFazfuR+LVm/P6kbWNy1RigyboDMmwOWnZCaFa7dzr0ioZJoTSr4enn3MITgrMdGjcsCNDZkEyvbp+YBM2dghREF8M+kSzBFxxEBGiCUjUDHG15PJ/iX1d4owBHITv3WxM2O+f8VWrw5ibtw9IUdeWq0okHI7Ql//gGq3KU0JPY48KMuOqkDtykLidOQmQ5wOEWsu8yOl0d/+6CFWv9+AtOe2NjtGEzRla96JolZILsKLdFeDZ2eMIBLywhPUEmHQvyDrc55FTVy0kllWRL1Gk+9SxCGJjdSbIN3gSIaq158nWqmYLOvR1V++M7gXADbt2o/H1+3kt9fImBg8i6Ur5EQz5gBH5n8WPlMhbcVlij4JKZZ6Iun/TxMzSM1iKD3l9mSnXLmeQ9EK8CCT7cdEsR3VJC8nY8x4+4cmylT5DLFkL5rVTaPRuoQ8Mrl27e8LtOAA8J0k+uCyTS5GhCcjFzEo+KKMuXprMtpeJlPjpauTELl/fHJjWo6kDqpZiNs8xBJbeM5QwtTNefm57zGFZC2QGYr4pM9zyolbSPjf85xzYo5SFWNUG+2AM5V1W+qj3l6afEA9aThkuVh9V3luieTKdY6c5KsxjlzrGidEK5nbueycMS5hh/ZcQJ5oJVOUEqRpnSYWyIwD/BNoW8W32OEcbZgLNeRYyX6bOF/NYkjm7bTgykhfRh5jAPYx+Tpvn9I28o2Kt3/x8S5W/axJGUFP555igKBZ3TQarUvIY8e9gQFVy03xiTfsZMoWUo4IosOVGzHrB/5SXnPO4e7+lCP3N5m3JuFDX73AXcdl5PetCCe2bC80P3Rd52mnfvFAJpohmWUsXO1QlC98E9LTivlHzJgX4nsiSj8eciGW4NgY/d175aqyM871Ut+II4/pFei1rtq615tLkuvi5rCuHGl5xcRFTqu27sX6HdLvAEnbBgtFrk+/bYNT5kz06qPnAuI6H/fcxgtW5T2b9bnhv730OABCBs1eSHvVCBv6jFCuVOLMZyIz9428Rkl0pRHCMR2OdBFHzjcbIuRfSOzhOSGeNq4jrSOTgdMF7h+JdKTVSvZ8/kZB1xTakZeilRCkmJLYsbdXtdsk789DJ3exgXWoiqMYl7GrqdjEJkIZ0PlGwMvHJjJyEqMUOZfQHHjR6Yd69WbljlBTvQCwfV9m1yuJaVHGo3rgOeVEZMl8QsesWmLKUP5KY3bgBn7i6JRzYuXORV/fRPoGrBcZj9cfU3ZKGTnJ6PsCOWomp+3pz5gKznWqaerY3Dn3k76TVlHiBU7oiOP/NstYJZ20YsmXZ07sSjeCL9y0OCgnaAkqfNFKJTTNQ1xMJ8f2jLlTAICF1AgJoZSRc+aJnpdEmlwceNzMzL5dcuzxmOtWLe8VmxUpm+XYxJ6/kWhhQm7VgfnmnSsyQsUumDbe7cQ9faEMPc6Ru8Xz0OptHlHRXJYBIZphfSO56L9d/1Tad6qfYkpwKwhqicQHmrKzYoAuRsjPPmJK+pk4rJhn5xAYcv+0omxyqQmf8ceElwNxZSi/PiojN8D7rjgh/V1yVpljjM71AsCCT4QerVzZGZNh02t9+3PdKWs/LXbR1g2JCd3WPT3e/eSsVI81T8aYGBw6KZTPckJEStBfPrQ2KI+Ju6hfAPCyMw8D4OKd8PY5U0S6njuXbk6fja/FmA29ZLxiysSQ4Cd9ZNQqNentDTlySjihBQnjor0sNpP/bolQky287B9tiD1KwvVcZWcTKXnrEnL4HApNvO7egUxmyMo72XEpXfDJFYGMnMqNUyLes3wrPnzt42ldLttHVjfFK1nP7K59z07/BfJltD9xM+aRGWkSdArHhqzcdY6LVjwNPSNIgK7cqhUXHT9dvTcqgkjKYiF209jYkfIpY7Ojb8x80KX4q+BfX+SsG+jZi0Ur+c9KIiktMJXk2g6d5Ezk+CbCiR0p7EikxzehtkqlrvR+fBP4UeICzwm63GQAF98n6ztx5HRC058bAJ5/ksuKdQo78Ujzwg3JaWbJxkzfxOd4e6XizVlOKHlcfum3QTVIO33tBEsy8r1ctJKUj+1ow7RxHXjVs+YmHUjuN8Y7yfX06zJwcmajPLxShk+il15hYOArO+GV8edrBlqXkFufmP7zVSdmZcl/j0tIj0M2kHeGHHl4lPOTK7tSAiV9/sF9q9P7edvjxcSURIH/xh+gvS3hatXEEo4zSOV5nvOJr7zKs7opYhI05xfqe6VicOfSzVi+iSUZSE4DsbgemWhFzyA0sYtlT48E5KIuB4kSWLmmpC46ixAx1gJTScsKefyWgaP+7RWnAcjEatwNXJOR54FzhHOnjsWzjzkEa5kcnZ9E8u6PJZawNuN2O9g60coB4N2XOP3GzYnyPlB2Vo1q0WOMn5qxN3C4cf9pvbw20T1pVh/SaoV7agPSQTBbsddcfgLeedHRAICeSLTUCckcJOZQBuGjdamtuTQi6YD+/M1C6xJy+FwCff75g8+odpsZwesPrFpk7ARtI/Datr6DhEzY6ly9s+9d7b7tLN9I5k4dE9QvZZqaqzz17Q9/e6F7LpktxeSYH4pjX54VS3vFHwRfRu5OLJd85lavbgNum6+LEPJCql5+8iycc+TU6CaQevBJ+38my8yzI4+BskapkRNBbbv/mkKMD9WEhBhJSygiZrF0bRqk8v6ORKSRKfqy+fSui4+O3p8bNCtZDZoizz0CO2EmVIMyONEpjCC9Wqm1ijFedELN85KDGCRN2dmVKDsfXrM9eUZEN5OMcXJ9o3gwYSwVej4XFfXco6Z591P9qrIzqUAVrcC/vxloXUIuOPJDxmdHci2MLeegMpkbTV6f6BQFgpdtX3O5i6WyJJ3YBZ5uyX9jgGv/+tkAgCMPySIzSq5VsyNPJ5WqeEGuaEXSjDzuUAZS4vJKzSaYFnU0tnXy9LFYLNY6B6qOtlAhKI/gC5P0ess37Unacr+79uN25DHQe62qaeT8OZHlruSxPrLxyJgDvx7a5EJxV36/6F7A5asEuHOb+71iTMota3VHbfvB5b/ug7SB5/P9yEPGB/3zvahN4PWIpI1/f8VpOD5ROPaIQYitmIzRCBkz0gW40xQT71Qr6GXmka59f7PqkYwba7ONmZdKBkJLQE3MnWpHXkBPGoHWJeTwB+ZYpo3mOzCBx0+QC1rGTpALJ2zbJ9TkUryc4hcLQg+4rCfk7cZPDJPHduDlZx0mOOqkz7TzK8Qw1aBXw0lFHFRMtCKJRp4ttyZPpb5z77/s+kzODGjyefe/KNGvFitFKr3OPWpq0pekPPlPppdFjlyx0AsxaxzAd/gBMh2HPNrL5+PEwNVfD0dObbs6X5YkGe/tExwtwtMfL2/L2TxjRI7K+Vricm5X7otW2pX4/NS/aeM78VcXk2hDJ5QS2nqW10qFq4uZrp+w24WMW9knvM0oEKulHLl/snWilThHXjoEKYhZrQA+sSFogy9l5HlBt/z6fZkhcdNvvuDI9H55L3f7lieGtopJlWK8/zGOnCtbZYAfIOQOYuaH708sP+ryrqQPJnNl9srpNJASsvA44MQLEe7QZhY3ccsRd+9RSUqu3uAkRRw51PtjzzZA46YoO6XCTbpxy817VeIE9rMHnHciP03kJeTQIAlJm3AqkoR+8th2z+qEYCquDs2ah9u/A5lFB7XviTGl8l48e3vFeLqoVD8gNouYshNw5qU0t7VUbxKhaKUCGWuFyjvku1PMG9sqlWDdSdGKFGdyZec371iRPr9mRddotDAhzzuKJR8KRCuZ1UqEe2IV8DyCMoyts6JgHIANJzvf4eXEuiGJOsedG4DsmLtPxFDmJwJJULL2s4kfS3YbO2pz5FlvcM9SwgB79hhBJI5ba5s2aNV8kD4kAxe6aSfFybPH7NBjz0YKy2rFYPXWffgWSwMoFW5BYCUxJx5LQrGSGaIUSQUcec47yDg6XxTYIzhyav64GRMwcQxTGtuMEGqnDXongOtbtWIC+W8eDZLmuJJQI50zsjzp/0DWNuGRZ3Zkz8eChnFM6BKKeFbeUTWKDNyVkwI6DWutcPxd7ZWc6IeO0fD0CAlzRc+waM2OLN1dwQm/EWgIITfGXG6MecoYs9QY8/5G1FmEoskF+AOXiSD6VY4Y0GTk2f3yqCTb7u23aRwHLVntTU9uTBd3xvG7q2iTkLEdiFiQ/Xnavs0eLo87GNvpJiyZaGX3x50XgGysAM2hJ+OeuBMSbzslCkbhPJO+Rd3Fk7pNjniD6qdgZFnAsIyzUkUzwmolFlWSYlZ7JqeCOaB7b0wItVRwk5nbiQlnzE8TboPz+5YnI9dC5ALhBk3tVyq+xQ8ft1jOSj8ktFG9FuP989da+l76xAabKlSTjUiJhaLXr5fLeOV8/LlCWZ6wycQ1cNBjDXS1Vz2LGNf/DKFC123kXKcUyOBHs2jFGFMF8GUAVwA4CcCrjTEnDbXeIkgOyC9L+5b+RkrBD137eEAQsvgXuoMCv4bq1+R5dydxwQs5GDExyZlHTjzO8b712wuz+5FNWuKgpIzcGJdpvKNaSSc873/FmKh4Y8q4zLIgnk3e+OEOWN2GERTdHTzPzjzjHENxg3/EHpdsVLu6+9J7qV1j4uFeCZoZnoHB7Us2IYD1234m8Rr8+h0r2HNnL/2KJJLgeWT5QAUmwpHnysh9jjLgaEV5tWJw38qt+H8/WeS1TRyjlnlJWp34pnXxvlGQOkkEAWC/JIR0monIqGObRZFkQrMzb0vEO979STmZN+6heaMYR3S1V1kslrD9IExxMoY8OQet0aLnawQawZEvALDUWrvcWtsD4IcArm5AvbnQiCVp87UdlHOZcock7nDnPvFiWQ09XqLXkOMGkOYEzdtkXDm8/knOOBOtZH2+kQX9l/X3D1hPxs7Le/oH8N+3LvPaL4qdzL8GitKBfO6JB/jX49TAszPX09Ql3o8xObUQreyXohUYdNRg4qfJ4GM23gPinU1mjktAqOykjerjv30ifW66Py/YmNY3qexrE5Ylsvyp9c6un5Ioc0JWNQb7+/q99mgDI+za34dHePAtG3/fPf0DwbPL+PtFMmou+iH8zSXHAHDvIiYj/7OzD8PsSSzkhtiM+oQMXI7fzv29av8AF4/9gSSujda/DsmRJ2Mk+8DvH+2ilTkAVrPva5LfPBhj3maMWWiMWbhpk8Lx1AlNRn7czPFpGeArJOk4N2/aWCYe8Gv4wX1JpD9lB5YBkKQG+rTDJuGwKWOj5a8/94ikb5ZxAO4iKWbgnnwaJAcF+CnPCk8EQL54g32NydejhJyV6ZYn1tPu66ZwsWBlSduk25BKP8ZZyeiDvO95z1YxBsfOmAAJmY6MPF4p40+ezoa3HgttQD0hIrd5T3baiYkmelOPVr+cp1FzdWfjsqu7D9+9ZxW+eedK79nkXOPBuWhcNJDOSXKzALfocchk/P6Jol+Z7/9923IALjwGPZ/sQ3uSFzWdk6yMh9INXOyTefPlm5d5/ePVL96wG3tk0gp5apG+G/DNLjVP8WZh2JSd1tqvWmvnW2vnT58+vfiG4voC8caPFzoOhJKySoXknMljMH/e1GBgKQgQBdbnEyOLVe4fNWXbXW3VLH/gQFhObQzYkAOgYPe7SebH+qw+O8JJcQ4L66qJfnbIEAAmbuvMSV48Lnf8GEwLThNvBJtIRNmpp5HzOS/q/x+fFApFky1y7X5ymtE4cmP0FHeSGGTmnyatm8tHpSLYl1MD967YglUsEuCAtWirmDSy4IKPZ7FgtMiKALAtieMiRQMTu3RPYo5PJCcFerY8IiM9NznIOkXGI3dlpKz0J3ym15GElp+A3b0v/8rdUcZm9da92Ly7WxV93PLUJjycnCok4xb6RmhbQVamceztbSYwP6xU/AxItOZaJfrhMwDmsu+HJb81FRpXStjd7QZQlne0VTyrlfR3kYmEy9jv+sAlmDSm3YvzrHFfXR3VNICSsm68LERy4lGs9O8nJwLtqMghF85ph03yIiFqHNZjz/hHZTKzA/KTP8RielcM8NGrTwbgh9Pli17NHzngJ/pVFY4gqxW16YCQ37/SPwIDzopoxeY9acwT/lyp30BE7LNtr5KgN23beG3T/i4VfuTBSBEsed8rxmDX/j5c+O83p9cTMVUMgTxHJ8BxiwDw9yQDF/PplfP5cszA54xMfMDLzj96GuazIGzaWvvri53oY822vcGz07sl0QUhE634hF7GsAdEqIYInb19ifNwJaVlkR16jI7mccxO/OOfoAFdj2BgMGNCFgPnZpF/oJmylUYQ8vsBHGuMOdIY0wHgVQB+3YB6c2ER3+He8r8L1d/T9FuCA6hUjKep5xzQjAldQeZtjePtaqugm6WdihHhPnYUpMVDDkWTx3Sk9fNyALjgmGnpZ0ngutqqnomiXFj0jFm5n0FIM8N7w3lHYMG8qTnZ5A1ed+4ReNlZczwzsELRCrI4LVrbVK4qKyVnFRljY4DHEtOvK75we9D3dmUD0ywfAKThbgM37uR/lnzABkf/mRM7MTbZ5Pg7fVhJ/kCnPDWptCAkxOEG5nUkehH2/UV6DcmRL96wS4hWwmf74f2O6fjnXz6aisMIf3zKEbBPCP0A1UEil28kimLqHx/7//uLc9gAWO9+ib6c5+OnrqiyMSK6AYD7V2xTOfKOasUPmsXa/+wrTwfgh1rObb8BGDIht9b2AfhrAL8H8ASAH1trHxtqvTW0W2x+KC5IY0RHzIkyu1y6v/a2u9oz0Yq2yXz5ZpcgeeHT2wIu9+8uc8fp0+ZOStoP+9fJch3KhdPVUcW+3tD8kIMf9W0RR560Lc3YqG6AFDsuJkWovc8IrWqrjbgNO4k3nNWKzpLTo2mOKa5dk8YBkXUDeghdzfIBCKMXZmIj9/+/blmW3i/nRNWYQO8RnbLJO2lTdidJSF58huPyX3H2YaJv7n8g1oF/v1Y/H8vNu32z0gGaEAxk0vrY2p24dtFaj5smq5hNiYhTmg/OmOjEjHRq0UQrh0/N8qHGZOTE3BBB5e/u/KNdWU//QOHYa+UUl72zvRIwXkCYyo+P4Xms7Vj9jUZDZOTW2t9aa4+z1h5trf14I+osbBPhwBw7w48BIculaIXPC/5ipMyMorDltd3VXsmUO4pogyb+mm17A4JETj390lyK1eHFvhAyS+80gIT4JhdQQg3uhUlOO3l5NckxJu4QlPW9m28irG9GIcZ0TC8yP1SzwVO90FG0YOh+LakF58insiwyZBNdWLcNS9fu2J95dhZ0Xp6SwrozQjKxyxFAOsZLQthRNer9cdFDXAbuLgiJ6Duf6wfn4mZ3b7pgHgDf09m17/7TyZOCV2ky8MksPn9MRv7SJHY6Oe7wLl5ygkvH1hPJ4UvYvrdHLX/v8xxz1VGtqCcaKVrhYxjLMHRAKDsbDU1ud2kSS5kgJ19HtYLuvjD6IeC/GDnxpozt8CaRVSb29r29WJ8cwzXujKwb5k4ZGxyVUzPA5I1rHEB35BgHOGIjvT/p3l2JnPKe5VnWeTIXi5sfZuXxuNkmabsN+3ozczb+XqomzOhOSuo8jhxAkkZO3ou0TEPRgsmLAjjA6v7pO87DmUlcnDTMQXJd/Hgcbt68T5pJq7zOnZI0b1kaE/edlIl7e3xz2ThHHm5CF7M483I+yeQVmrLzjGR8CPyd0EZIIrdA9BPxTOVjyzed2Gkpi3fTn9wflnn5B5Sh3987oL7bLpa4QqcXxgtjYFn7gddvTvuNQusScoSWIde84Hjve1zZ6RNSgIj8AFXuypMyUrzx2Amy7j8kHn57uvvUvj33uEPSquVRWWZW1xwweG5PuZGMYWKdtH/J53uXu/t+dP9q736DeLwTWKTcYcxNniYtKTpTd2ZkNuzrd+7HjxauDu6v5GwipF/Ij7USgi+4GLGl+jLRSlg34GK4UEZ5ikNf6H04ULBQlU2GhzCmUxKnwXI+ZGaX7v9//nFpeq+rmwhlxGKGtT2+i2WkEsrzl541xxPxSEIPZI5OBN4k3UuiFUnIjHF2/j3CfDLuEJQ8v6BWxPl2K6IVzhVL01EOY/T11tWe1a2dplRlJ52Igjg88fYbhdYl5ArXa4xJXwCgi1a6Izt0BzNXi9p5M7tQ2TbJ5IhQh6KXLC6IbJ+4vlSpyrjDlZ+6Mnh2ySEZoyTLTS54duL+v8AzT3SmcnmxWEhOXRTOdUwy3jxOTEwJmfbdxL1KHaGP2JGz55XY19PvXb/4Y1cAAE4+NAseRaV5MWZoTCg07gNp2IV4267uUC8xa2KYZZ1fsa9H2CEbf7HH7JADEYlgLKSyM7ufcblCPyAfq2+ABb2y4bO1ic2Ci1ao7PM3Lknvl+0TU+Xa1zfJC4+bnvh9uO+yDyQuJIWzFH0AjpDnhT9YvGGXWr/PkYenqU5NRk7PJkQree03Ci1HyB9ZswMbd+1PBi5cVS89M/NFUjlyLjPjZdVK6r0p5cBkRsWDXsnF9LwTnVinn6xSRNs8x6CcOJTt5f0/fwRAbfJY3jxlJtIsKCiOy1mHT0mvH7Bky62HNSUPR+e4Igk59T15rg7fi29AGZvVW/d691dMtvC5yIfaNoiYHxYJmhmx7Wir4PknzVQVmkRofNGKL54gIpFm+LHhYub90ojhepbgWZNTcxM7eUoCWMgGhRByyLaljFwSeiDUD/C6yVGGUrlpzwYAr5x/WPo5Ju5Kmnf9531sq2Sp1pJyqR84ZFwH+gZsVEZOxJrraAjkFHXdI+sAxMfvlw+uVc19iSHcz6zcePtBrBU277MTB5Xnv79GoOUI+Yu+dAde8LnbUg5GosPjFMQOnlimyLCagG/gL2VyX7t9BYAsD6KmHLr+0XUAgGsfXqsqhyjH4NduXx4Qaoq1QgtDcmDkFUqQZP41iTKWcwB0r5S/u3LyrnTfo8pOhSuWY6NlM5dIPWbBRQju/m/f/TR2MLttax1RMMadUD5/I8vmDnqmoAnsTkRa/Jnbq76nncxdqVqtJHVTOrA/T/I+5ivMetXNnUOL5+GZbYpTEoDUTV5unoDzUH7ByTPTurXog/zZgvn62HrWtt+vQ1ii8hTKs330Jaekn7koJnBIAvWf9zGTMWfmh34bXR3V5KSVdCEmI+/rD+6nxMk/uG+VupHwx9L6R1Ziq7fuVa1qpGenFLfyBNR57TcKLUXI1yec6zZaOMo1fBLLudfZ7tuRe8oR9mLkDv2m8+cBYMobpe6ViZfeo8/sUJVDRDweW7szI3XJReMSrm92ktBXcuykPPKPulndxyRxufuVE0OaespzAEGicAw5U1eeccVx0Yr7LkPJwgJSX0cpu+h+qpvQOyAWBDKOnY7nftvhm//WnSsDYixjSkvOj29uUo5JgZUyxSi8cgA4hllJFZnDcmL87GOSaJfMM5CILR+XaeMzb2DAJ2Qrt+zF7x/LIi9qYoW0baaz4anWsnL/uf7lKhfzrrefy5fDZ+psq6bio5ii0vUv3MQGLLBVRB+UbTzw9DZs2dODxYkpqXbCBpCOAy/nGaoGxHsHkIZY+O0j61SOvzPhyP/990+pm3B7NfQcDk4cpbJTxzKe5Bf6wHQw+aBmteLsSt13vjA0qxXCuUKxo8kM6Si+cssetW/esVEc02nik5hBcuwytobkoCjm9Y1PkCeZ710JhETLmExBpeXVzGKCRDjyqGglDBgW2rDrZnYAUrEULXKvTOFsiHt0gaConDhyf7HJTDlSTswRZPhRLD9I/n7vii0BMfT7bdlmafC1N8zHgiOnhmFQjfHGjm/cQFz3IE8DmrKTShf962XB/ZLxuHWxi4X0779/KsoNE0h8FHuf1L6rI8OmXd3pvO2PbNDEVf/iQecoLseXxu/aRWuD+skOfMDqosrXLHCn2L2c42cXTPSUwWH/teiH0s5ccuSlsjPBgCRGyuTihFyWplYryg6rDXzG2fmLWjuqElG4Z/lWtW98ksZ26HsTyxQr7pFhdmWqucfWuiP4o4kbPicq1AYp7+j5uKlbkNQg2SjaFDvyTLDjKg6zmWdt/vqvLwAAvPG8TDSUOvywhc8tbkgsdetTYWA1TbyRBs5ijl6ZGZ4fVzv17My1I3dlJPP99PVPevfytslF/OcPPKNaMlHclL4B673zMR1VzJ7UpeZZ5XUEor6cjcInMv51krE4S5gOkjiLQGOwYed+VX6sQRLy9qphJ0nqv36v5nehQV4zb9o4v5xdQKER1u/cr+onuEJYO+nxlHnaeu2oytDRNqQnreYQNFzg9KYWjlxVdvbpyk5fC+0TqyqFvdyXBbKXi+qyk2d5fZOTjo605x01LSozG9MuFGvJBd+/72kASHNkSo48dd22Nv0vn53codNyZGmpQqsVljczsAN3/0l8EsjIGWdyRLLQxnT4i4KnxAKA797DZeiu7S17tKQVSdvsXlLm3vjExmx+0AYsZeRJDfopher220y9HJXFvjXp4x8e36CK+ijxRjcPC5GULdu0G097QbN4qUOo7MzKJnT6YRHyZOTSMOD4WRNxSCK2cW37G8G7kjgqyzbtydVLcEhus2JMOj7SCkxiQDnhaogFokvL2Wcus9dEJ/zaIo5ZI/TjOtucqTGdmsT9vqiW+q9W3xC0GCH3F542Lh05MvKOahV9AzblxKTMKzgKJVUtXOk45U/+LokdodRN+S/T+yNvbc32vaoDxLPmTcniqYtFf8Ups5Pf9Unzl885EgBwwqyJ6f1UGkY2zLi/mLKTB3CKilZShyA/Sw8nCloaOnp2zsFRkDPt2fy2w2f54IucPPeKU2YFIqu2ip4EOI0TrdiR02KV+Rq1zfnvnn9cbr+JUD+9ZU9AzCgNWHca595xpbyGzBzWgddPyTS27+1JA5ERfFFWEjaZlXe2ZRZaaf3e/SERLLK42C8c0vwcsu5/rAayopL43zc/y/tetJnwPlK8+NMPm6Ry5BckeornnTCjRq9dv3xCVzv6BqwnUuQXdLRVPd+KsIbGoqUIuRReayZPvmjFqGVEWDwHAsaRS2JFrvcph2HDumX28tgrW711n7pDd7VXM/NBQejPTAi8F7eD3UunAeL6+YlhRsK1UNILer5cZWfCIcXSgrm+ue+aaIX61qGZh1mkeSsJpOSlvsg1vTQxg9PGjayBfvXQ2oB7DONh5HDk4l4JLXQxT3As3wmQWSG5KJBJ35OySxNzVdpoyaGIN9Enj+ZK3yged4wjH7BIxFXZPeRPkUIQUgridvrcyTVzk159DOt36KINwt6ePseRK5SIiC2haDPRihet2RHMWcCN0exJXZg6rqOYI1dOFFJvJfZKEfKD6s/t/pDQUoS8u8/f9VUZOT9WKqIVgBGWGEcuZOhktUIxv2sL2BUvy/bn7KLOtmq6YUh5bNBvMWlkoH4uemmrVjBjQmfqqUjPl6fstEAqWtm0qxufFLGred9kNhjet0rFueJr4T45IT9+ZpbIgejh1UlgKADYuIvssX2OG8iI8u7uPhYTgzhy451IpIzcV3b69x4h5K/WhguRCM3zT5oZvBPXN5Lf24AgkgMZj7hZMSbN6+rKbNo24Lf/srOcv0R3X38gGukQHLlUQJPS3/NUZvfTGCxavT1QIEs8PwmLQWnTJJZs3KUSUsLtSzYHikIC35Bqk6HHTnJ6eVe7Cz0d2yhfeKpjkL6emB/zYtJn3cPSO/qiFcX8sFR2OshdX3u5uVYrwu5U7qA9Ygel8nGJPPKXSRaevgGrRqnjyE/1Fp7Vutorab8koSeb1m5mzqRxB9zqRnJoMgi+I+S6spNEQ0Qk/yfJ1sL7nnp2KlYrMe191jefI88yzWd1//srTod3ExhBi8xaeYBtr1Y8D0VpteIrO5N7oxx5+E7HdFQxsasNcyaPQf+ADRR+PKm3FI+0i9MhKdDnsqh/r/vGvV6/+YR57nHOfC51IedMCVN2WoQ6lY62Cqz1PUeLuVG1GMsTSzJyHpLoY+Z/Wh13L9uC/oFiGXmMCJKOBMgT3ejPsGLzHly7KDvJyfLfPuJs7e9atiUov2upU3RT6Iw8Zadm8dRotBQhX7PNz9xSLFrx0SmO+jLWSszus014yg3YcNFK1MJB8Bff2VZN+yVjS5BNK7dz1zgw7vLMy53SzxcxcIWj5jTD46FwyD2I5OD7mYs+v21vTz9uSeJTu765cefjR/FYODHtaKukmXzGJhtpkSmcPCKHMS9ceb6yM07QdOW6k4VqCjuaN30slGp6n2pSaoIInq5t6lv2W6c4pcVFKxaCzqfjwpM3xy1Kwra9Z4ztqgl+unBNNp9ZLyjyIYVWKGJWY+3z3Kn1KCs5yD+laDPh5TJ6p5SslcrOHPz775/yvmsDk+cQlIooCjlynwPiNqWAI3waIb/p75+b2zeCpuzcvLs7iH1NpVlwoIxjl/I+wJmL0f18k9NEDAYZZ6sl+o0SS+E9SYvj54mtrxZzhDuhpDbs2iaR/Kf7yX5fJtGNjW26WSXlYThR17YW50WzbHj1gix8sdygCHu6+7Bs025VYUeZhh5ctT1YzPTO+LMZE4p0qN/u3qz+7JQWEsL2ChetZJsEQQuzKonclafNxlHTxzFFoD7or1qgZyMiTvmpDbsCBzgAeNWz3Nj+aOHqqGiFI9Y+2ZDL+jnIHj22GXz2Buc9XA+hJacuiq0u533pEJQDOk4StJdfi7JTi19817LN2N874FkraC9+537nVaoR8vHMJEzb/d+ThLJNM5qwMnLC2LW/NyCWne1+v6XijZ4ri4bnc+RBXIikbuKmrvnZw+qkCxI7AEHaMQKdlqRJ+gXHTPNt6JNNhI8fpRULHaGIc/RlxbH1sH5Ht9c3GU409Z40cULO5wzFeKcIetp829fbj/tWON8ByZzuTIKg3b50M6R8P6bXmDquA79/74VZH/r6Va64k83lIkJI5qQELtaxNpyLADC+IzGvS77Hquf6DY6/ePaRAIDp4zvV087piQIfcHL0ohNs6M8QIjYGKzfvyS0vup/Ai999iVvLZMvOcwAA7qQmGcNSRp7gyEOEA4AyLp255odxQk4Ease+3lyTq9M+9AcAOkdZJDf/SpJN5o+JByavgpRG+3pDTzPqN4VUlcc4LSMM77u0p07jjbPbyCKHc6Y3PZmJRHjdQLhJctPJmD2tu98RRGMMln3ihQCA5xw7Pb2XP3dmGSA3GX2cV2zenfQ9IlpJ2qbTijRn5W0DFHDJWc3EAkcR+hVC/7wTXXKDF54yK/pslICYbxQ8Cchja3eqyjq+ScmNm4fHJY7cMz/0QryGdQNkJ828ZSNj3imstQjHJgT+7uVb1M2CW1HduXRLoahSi1QpEauBGIFCA4XC+tmJSIg7ZTmf95lIsHloKULeJ7xTijlyvYw4LT7wr0sCU/VyC4OcvlRlhDlksTEAnWMngkL5EHn7lyWEvLuXOywRR+4WCylWAuVWkBHGP2qH9tSOo+eb0W8eXpvVDbdweULn1Gs0ojjyAooJsY/nXcnidlcrTlYuc6XKuNp5jjEcNyfeoAFHz7K1c93ANT992Au/C/hz6iNJcunt+3oKud5bntoUEDuaA3uV0MWSI+cbBZ87XW1V1X6eRCvENfO2fS/ikIjKTYD3izC+s4o9PcwSKPLcnCBzyNg+gD9+cqxiG0URp07WP0BcCb5ozXbXhniK14jMX7IPFDgtK88+k918lpc0VHZmxhklR+7h7Rcejb+55Jj0uzYwvmdn7aKVzraQS8kbd40jr6dc1s+5RykL5hwaIW9RhBy7LyMnUzquqEq9RpmxPtloA8Cu/X3pvbLvXtvKc2kcOe+btLdNlcwVeie1iVYIgWil33faIELZ3TeAnyap2DSCdndirfCx3zyh2olLBGFWk/5/5DePB5tzIFpBeJKgfmmbzKbd7n198NeP5ZrDOo7cejoTLrLytUEZxnW2wVpn1qk9G4ErG2W76TOk0Q31OvLKvvyas+I3ITtJAiGhfkliwvpgElNetvGJl56a24e/yiHktCY3suQZUvQlw2KXHHmCuVPH4qxEngroA1ObsjN0Xsjk0P1R8QFH7Ch4YuIkoi2sK06ZFf5I7ZPyqjfcSMKwpPk5FjlRAJIogEGEQeOdKg6d7KLYcaLBOWkyM5Ty+6BtaX4YZFLxr/eClQmCRTFD9vX6Kc3kxsVjuXj3C1EaOcZwova9e56mouC5piSxQuhdF8lQ5ebN25Gbc5r4gDv9JGUzWUIKT47Nqqd5dvphk1Ub96xdJV65wpFLCzAyuf3L7yx0z5ZDhf/qoqPx/bee4/1G8wkojhUDxMeWlIkxcIsyWYXcZPJipmv9myCMHHgfjzzEWRe9O2Espa2+Y1ASBkS5v9FoKUIOFDsJ5IpWhPWHbgWgL5z3XnqsV1dsYpNZmfbSDpsyxvvuxz9mG4lQvEmOPGZBQZBWDG1sUvH7uUyfrCX4JtKrKH41m+CXn3VYGvdCIxoeR67I0LkZnHvupN8JR/u3P1rk9U0O/RWnzlZGwT9lUf08xgyQWTRoHDkdra8+49Coidx3/yIjYIH5ISfkou+0SfV4m0x2PXGivX16TsnpiRjvuJnj1YiTBGd+6CvHifjx7DgSlEyFxkfLJUq45vITcL7wwuQZhGLRG7lnbIzISY9pCZ4wJSbaSstza6ohBICom6dClGuyo62S+VYoIUEajZYj5HxxqHbkHkful6d5+MiOnJV5hDS9Pyt/7Tk+1xcj5LTRaOVyssZEOzI+s5zMMvqhhDQn27K7J5VhA9xFP7uG4p1wmSonwDw7knyWjrYs07iU14aZVEIZeu32+0m5ePYFzGuV3788sVa47uF1ad95jBkOTak3odNxZB+77omojHxPT+bRKIuJq73spJmBU8/ubrfIP/OHxcmz+acs4kR7+626yRCh/K9bluVy5C/98p2BqI0yNv39Txalv8lnW7Zxj/e9OgRKcecy5zwj1+uP3n5u+jlG5MYUEHJK/AGEYxAQ8gJKWm8IgI5qxeO6+f3fT2LwL2bml6VohWEpi0muDXxnW45opep7SGoyaifaCI/wHYIrjnLkyXVa8UksfyQgNhIl2Stv//KTZ6VB/J2duF/3y89KsgspFgKPr9vpXwwbeFeSRQ23kOBcfBoTRKn/B/etwpY9PamZnhxX7zQA4bzCMjPJGDOh7F/nbCSBoPsppAKdhKSyE0CWZUfhGmnjP2HWhKg4i883jdDPmTwGE5kdPV1CStZHUiUygg0OoOQOVL/SAWQbMwclh6AIhrzYz1Cvj+mLTvdPOXkceREodZzsPxddxDjymFVM1i8mWoE+D7Lv4f38VFDMMfsX+FmA/HlPPgSrt+6FHQZK3nKE/EjmMKG9GE9GLspSF33FakXa5cr7ZfqqmDKT2tdOC5TXM+2fJ2Jgoh0lNsXkse3p71rI0zsTl+E9PWHaKwmKbsjbf9FpTjHEieU/X3liWv5tMn1U+k7Y19Ovmkbmp8SqeG7qHDKbTUQKAMClPiNQ9RQPm+T7UtkJAMclZnIat0/P+OT6XSqxBPzAThqt27y7O4nr7fft4hOcyeWfnU3p/UIlMIDUa5T3R0LzOuVfrZgvfO7GNomLjp/hfS8yra0FeRxvzLywo+Ao4Cv9/bJ3PPeo6LUEzuTUY0cOhGE9eDFFJJ05sYudcptHyVuOkJ9y2KT0c6H5YYHVCp+bxBV+5+6VqmjFGIOHP5RlV4lx5Fv2dEf7JhcD/0b1Xbtoraoc6mrPgmpBWbivTxR+6SaVM2fysqLz5XTFqbPxH392OoBMZqpxxSQf7x0Y0D3cmMJOin3aeTo2IbYZ39mGw6aMSQNEpeXK2HOPyDRoVhqDJnsqbkcO8Pg1+ZYVP7hvlTqmvs4mvKC7b8AFhhKKWtLJ0GYj6VgHU4YWWT3s3NcbEnL2XYa5Ja/E+UdMKfTcTJ+tAYQ8j1ByERUHnVRj4BuArF8qO4s4bq14FlM8B7GbhFjQD0vNxH0FJ6pGoOUIeUc9yk5lBwWYHTkr356kFrv5qU1RN3VOiGOEnOJMr9i8JygLQt3yxZY0+utFa33brQSdbRXP5lm2Tsd3kkfz8peeOce7liskv/Jap1SLpaUib9rA/JDVl2bC6beenTgQxhRR48BIsY0QzXBlpWyb4Is43H8y//tJEsvFxUPxOdK07tRjNb7aihZirndlhBhTQDIpg+cu/EWWQis271HECNn33oEBr+/kMLTw6W01u48PhiPnAa1cn8Jr6NTXGwmDWyQj37I7Mz/U1iR3jhqMZyelsgPCd9feVonGq0nj7HhBw0qOPIWnzFSWtKcMVXZQgJsfZuVkznXU9HHRmB68viJPtK+yiIEx8BdL+R9feOqswCYVcC78Pf0DWLpxdyDzBIA/JFnR0/yGSv/29pAZX9b2FafORsVkttaS46bNjzv8AP5Y/O5Rp0z87SPrAgsJGaBJKuZ4mFtNlJgXzIxDO4kRN/dwko2eQhtUPY6c2ZhH6k7rLeJaleIx7VVMGtNebH8vRU5tRMhtNCwCYdmmPUHP+LV9/VYVGQGArWEDAwZnOve1N8wvrONXSURREglKtFcruOykmfh/LzheLT+POQRpUpiLmYhIe4QzWKgArfxsbu4sGUMRGIsXr9zsFMrfuGNFYYygRqDlCDknUNrA8Akp5diZ3DHkyOdOHQtjgKtOnR1ddHyToDgaMZCMLIbwKOx++O0j69UkBmQG9vCa7apoZMkGpwRenFzHQcT9jiTHpKaQDCK1JWVyw9LMDykf6FMkS2bXp/bSTITB+75ozY4092W6SbA29fDC4YsnUQUHOTRRgofUaoW1H4ZGrp8jJ65Pu/eco6Zi3rSxUVviBRTjXpS1J43duWxzTXbIgack+9w3MBDfQHJESjyd3GA48iLTQSBLh5eHr75hfpp+TqKaw7jJPmjzZm+O1RHgmx3L+5ds3I3fPeoYKJn+8ektbk3c+tTG0iGoCPUqJ4wxnuusvLutYtDL4lcHohW25f8hiaEtQWIMSrsW7VtOmSY6Ic5h0ph2Ne7H6XOd7oDiWRcd82PxUFKikSyQsYHpY9J/dv+nX34agIQoCeuLIGTqQJwz0WJS+H2LEx2yy5ZlMyd2pu9RM7uUYht5/y/+6vz0c4xrXb11X7T8iXU7sWjNDtXNHojHs6arf/XQ2ui9M5mzTNA0F630xx3I8uKA/NsrTks/F51Aa4E2J88/6hDlysbVT4nJAV0Z/aEXn5x7v7cR5AyBdkoGgJ37+9Q102i0NiEv6L02+TqrFTUeOeAcUPpFxvN6QZYWk8e2q+WXJ2nZ8l6q5M4A4B8uc0dL5zodcuzvvMhxLGSFwYuJ6xuXxvWWWderqUJQyqGliEZTdh6VxNvoU5Sd7UKcJUUvFx0/PTXz0zw3fRl58qMydOQ8JN/5hp3dLN55klS6YrDyU1fihFkTWERJBM8FAMew+OBF80GjdRt2OuU3IvUTpBKYUvRdcsKM1EZf2tXzPLEBHWef+wfC+UJYsmFX0q+wfCzjyBtCyJX1+vLEaqcR0Pp459ItWfvKM5531LTc8rwcwByO+coueCFzUqtFbDdUtDYhLxgZ7cU6jjyMRw64yIPrdoSmYhooTKfENZcfj4++5BRccsIMtZwWY17dWlyP5Ulkvy/etESNfd2eKldCixw6HtItkiPv1EQrrHzBkVPTCa05BFFwrceTSH28a52SIxePNnvSGIzvpFyj1HZWXq2Y1GIGkZMSAPzw/lVJO3EjRfncT67fpWYn4uC2zkXihaJQslr9BC3d2uSx7djX05+OnRQVnn7Y5Gjb/Ct3yJL486/eE1xPoEBpQPM4ci1UciPr72oPleAcXrAxpU5uNSPfHVfmSnHlCcw+HTXQk6GipQl5sYIm/M0TrSjl1y5aW1P8YDK5kxjb0YbXn3tE9F6yZsnr+oYd+4OXTlzZXUlqLKnYoUlMij2ZDxQQrupC/CFjJ/NFcd+KrX5MEPiTkuy0v3330+jrH1A58h5mYsjLu9orqRWRJgO/fclmLE7k/3knpTwCTsjLRBPL68gRM8GjRMoasaNNjh4/b8bKprfv7cXdy7fgi0mceVn/UdPjpwX+HH39xRl4tL6TKWusvF5oVchTxlCg9fFzrzyDfctvSxsjrntpF/UfN3NCmoNAGijQyfz8o6cVbuKNQEsT8sGYgxURckC3ngiuGSQjQcl1817qrv19Qd///FlZyM1+awOiQumqvnXnyqT+rEzGHAniQlQrqfmXDA/A8fCa7arijR8/U1GCKIttIp1JqjRAl4GfMCtLXJAXUvXDTNbJ8dzjpuP0xPdAE1kRYgkWOGJOYLMnOVtjrZiUdHRS0q6h5BGxvm1KIuzlEdOAI2ef+wYGgnLu7AXoz/YqliGpEYRcm/Nnzp2Ci46fji+95swh1691kcu4C2OpROgFQQav853ZdPHVXcu2lMrOGMYlXM6gRCvVihqPnEMTHxAoRvWJ/Og0CBQdKWXTY1hs8IEBGyw8igp55uGTk/sZoY0kWCA4N3mp9Auffee+PlXex9vq7uv3vq/Z5sywfkxyaoQceU//AAYiSXpJvk/3Avp7lV6ghFsXb8Iiz/wwK3vF2Yfh0IQI12IZEiNm/5dEUNytZJLfloRZ7Umd0MI6yHuzaKHnOeVIhagvWgk58qsST968ursYERssIadQsoD+7JWKwf++eUHQn8FAe4Z7VuTLyIvA/RNkmI6OxEXfWqsaKBBqOe0NFS1JyMnmtHDiF3DksoJzjpyKBfOmZotCaeAN583Dyk9dOeiJTcl1+yIuyYS82vttmDOUCJnW9ZAr9he65CxiHbCwhSeRbXt7Pc6HHvPpLXvT+iVHDsiok9kF37nbEcmlG3flOlZIbklDcBJhIqVaItQVLcR9ii301+9YAQC4Z3mYiZ1i61MM/KL682T0MjE5Z1L6BgaC1zlrUpf3Xc14xcZ0sC76J3oRDgdVRc3QnoGnhxwMHeXPrXHkgFvLFoguWnr3QwhXU4ghVW2M+XdjzJPGmIeNMb8wxkxuUL8aAjU6Yo754SPP7MB9K7em35uxgb7i7MymOYa9Pf11mQ9ykOMOzxokQxNIO3QeoTDvNNLHTDNzbZrZZ9Le0//ART/p5/7e/twj6JINu6PhUPkzxuC4pjBWencNzkZXneb6HjMDTNvIKSMZPm+fAmY9vGZ7jYkr4hcEhJZ9dTLygk1CkVUX2WjXgnU7Ms/IZnKkgH5qOHEW30j09p81b0oQYprgycjFGHmmtTlr8hvJZt4I8VQMQ90jbgBwirX2NACLAXxg6F2qHSsTLi8GdcFXK2o8csARUCDuTt0IxDzYOO5evmVIixrwuSmZsV2L6yETHGtjR0dIICR4lKpO9q1N5t0UIoTv3+esTX76pzWqxQzhMzcszhX7yEUm4cLBxq118uo+ZY6TscdOUW+54EgAwI69oZPYh17kohBOS2Kq8PrJ5n/Hvl7Vm1eiHkLgy8hrENsoz82TiQ9WKUmiPqC55ndApkvgyEs8QfjJO87HHe+7RC3jIk05L7mzW02isdEqWrHW/sFaS4LBewA0zii0BozvLAhxqQxcZ3s1S8Yaua+ZWuYv3rQkWnYaCwhW1HKRJKHqHQnd5x4WO1lG2suTkZOc8z//uDQqS/6b5zEPOC62Sc6Tv00SGUuCtT0hfk9v3aMqOymrkkG+rLEoSt7j63Yq9vNZQK+8zfu/bnZWI0s37lZKgduXuFyhT20IvWqXJV6vP0+8a3n9LzrdjWtbpZJscH7rN//DRd73vITfO/f78nk+d/v6BwonVNEmUUvqQg08imKzOXJtoy0KajYUUMCuLyXroqj6UUvIBd4C4HexQmPM24wxC40xCzdt2jSkhj77ytMB+Eb3GooTT/hl77r46CTrR3J/E8b99UmSZw3cwUPr+8tY8KuiaHScQyXunGKO5yV30JSZxJXs6+nPDVxF4ERkbLLZUuwJqd0nscXcKWNVZecbz58HADh86thcx4r2iGiF3nf/wECw2DqqFVhLIiP3mzauZ7AsNBremhOOYY9QgPLFTPkm3/2DB9UY80ce4ic21vp26GRdJMAvjXHks5mcvJCQD3IxjPGsRppLyC8+fnrwW62emYPB1+9YnvxfoYbN+ABbz8AIi1aMMTcaYx5V/q5m1/wTgD4A34vVY639qrV2vrV2/vTp4YDXg5eddRhWfupKL2u9Bm3ieIknxPTu6RtA/4DF8iR5RTMm3iUn6o5CgM/1aC3TUVxeq4EnVqYjMgXmCiLteVHc3G+8/K3PcXGdX3vuEVHRCidYvKi9WsG0cR249KQZrO2snDKZz5jYqcrfj0jijN/05MZc+X1M2fnpV7gEu+M720MZuZa7UhnW42eOD3/k5TnhGN7NTioAYFg3eab5WLq2ixTixPGviehGgg9RX39IZABgCgvzWphMfJBEiOsumkXH/uu1Z+G5x033xIkaGr2ed+7L5rwWNuPV5xzufR/RMLbW2kuttacof78CAGPMmwBcBeC1tpFuWg2ANjnzwtxen0QQ/PFCl1m9GTtonvb/tBxPPSBTlALFfdPaeYrlp/SIbSWepQcAJiRJNQwrl2KnfvbqZderFR6qlmpyoHAJ/33L8kB2D/jvMC8bez9LLs1BXqP7e/vDELsKIde20DEdbcFvHHmek7OFdQgf1/EsWUnsaD5v2rjwR4YZE7rU3/mm0NuvB816DSM0zeLIvT41iSN/4amz8e23LCi8rkhZXS8+9GKxiYrnk+K+UStaMcZcDuAaAC+21uZrHkcARnk6PwyuD1r0hMHKBfOQV+eYjmp6YtAu48qnepSdBIqtLC1H2qqVVN6niTdIzt3bPxBVyvFA+rJvG3d144f3Z/FO+P1HJnFarjh1FqDoJno9rlWvHwD29ejEdGXiSfvFm5YE9vNEnLq9BMdhHa9eMDf8kSGPPgQx6NnnZx/DXbx1Qlf0nmMJGTyOfEDn9k9mqQebeewnDEMTudDMQ2vBdX/zbHzjjfOD32dP8sVa8vHkux/NVitfAjABwA3GmIeMMf/dgD41DMUcuV/+GnkUasLAP6GEmeXQYqVr/dEmBZep5nH+QRD8iqbszMrbmZlVzIOtPUf3wCFtuWmTqBpdNzGbZWjJk5HHrCrI/O3eFVsDjp9s1H+ycHWuWWWXEiKXg8b9msv1mNlHsDR0vH4vLnjE6qHIWqSWGdoX4ch5rJYiItMIZnakj+tFp5sYTj50UpCmEcg/bWkYtRy5tfYYa+1ca+0Zyd87GtWxRiAWNIsgx/W5x2byyGbtnrv258cxJ2jN89+0TebFp2fecUUEgN9erRjGkYdcMW0Kvf02kHFryI/sqOem/MwNi9VYK/w5l27aDWP0+nmCAI7zk8QD7VUT6AZ2J5Ye63fuz03eUC0Yy+kTOrHyU1firy7SY2Y/zcxkZf2XnjgTJ82eGD3pxJ6LEAuXHDvVcPCxjRGZwxO9TCynZj2oxWmrGXjZmXMwY0JnwxmzY2dO8L4XWq2MVoeg0QoaUG1gPUIuyg73OKcmdAzAlQWWNiT60frOI/Fppw0u3pAb0fNPmpl62Q0Ipd+W3T3YklhQaApFntHdKXXq4xLPmDsZx7Mkx0ZsIoSivJnXPbwuSnBiSQwWHOXGZNve3sBa58NJuIX+AcvyuIb1N1LEJqvqaq9gf19/9KQj06VJTErCJXMxDeCPYV4YW0KMcfnqG87Gn8+f6ynaB4tYGIVm47N/fgbu+6dLm96ONoY8aXszRLWEA5KQPyfhrFXRSjUuWuFo1jGIbxYaTpnjiG2MWFJYTo254SE3JfczMGBThwlJTEnJu3N/r+oQRBP08zcucUrFOjnyKWPb0w1UxlLnn4tSmgH1Lwb+vtfv3O+9Vzoa//D+1XjX9x+Itj2usw1vu/AofP+t59TVtgYtt+byTXuiJ51asuw89uEX4Ftvfpb3G58//TU4BMUI+QmzJuLTrzhtSCdUmtMHOrQx4vb9zRSt5KvjWxT//bqz8My2farCL0+0AgCnz52MRau3N020UuS4QtEDY83neT/OZ/kFZf9venIjq0Pn0HwzPL0DNz+1qYaok/73PT39qdIxzxOdpfSI1l3vWuCE8LG1O9NIiEDmyevVH2n7H194ovp7LXj+STPTuOdyXH+9yOWsdIq4fN1DDOM6w2Usx2kwSVgahZ+/84I0+uOBhn97+Wm45mcPAyhmMpqhc0vrblrNI4ixHW2B/IrQmSNaAYDHk9RQzToGFR1xn9keTxsGZMpQrX9eDJPIyu3rHwiIKeUXXbF5T27QLMARnHpFK/et2IpdiZ25FOtw5IUHIAyZq2H383jbaf1NWBHjOuKhVMlhprtvoKHiPFlV0XyWjkuNREdbJc2feqBhIhMXDYcJZwwHJCHPQxFHngY3GmlbqQLUO2nemmQ02tPdH7joUybzn/1pTWHITRfbWm+TThv5mXIGd9og5D32qXMmRbOta/e3KVS7aJMaDPLidbwvsXRx4X/1+z/1slO9/Jm1QNZVxEBop5MSxeDiTG1Nvu9y5q3dRJJy8BFy76gaH9nhsKvV8LpznQlkjDOkRAv1uOgDWe7J3T19aoYggKxS8hWOG3Z2R4kCnXb6I7ZqLuZ4XPEWU3Z+iHkv5m0S17772Wq2dQpqBfhvXIZy1dpuBCiCntb1/ckJa/Punugm8qoFh+OV8/Nt2UNIWXydt5eoCZ08losyyNzpa9SaH7YiijhyQq1mgoPBt978LPzsneepZeSUFFvUnclRvF6XapKj7unuC8zwjk5Shu3p7qspCH6siMQnu/brx/T7Vm4N7Mg5KDGDLH8TJ8SDWAvPOS6z6ODPdcyM8R7H5Opv/GIjOb02pt+5a2XWtwauRklTiojI3Kl6zJYS+eD0RPPdOGQcC4NQilYahzzzQ45ackAOFhcfPwNnHzFVLevI8ewEsqwtRTowqSSjBMY3PbExcNF/UxKY6vrH1jMX/HjdRdMxFqlh7fZ9QbZxDtoAckUrg1gMp81hUSXF7e+86Gjv+2ATKOSBLI20cVnL4nU3Uqwjx7Bo3GL26CXyweOVa8zVOUdNSz+XHHkDUav54UihsyBBwr0rXOKL1Vv35V4nHYIoJ+edSzcH7uB8c4tx5Pf90/PSzzGiQOKcm5/yo1uSLfRXblkWuOgDSPNtxhJ+DBWcExqsPfVQQBy55lPzfBbHvZHTUVYVe6zvvGUB3nhePCJniXz0Mmscbe74yTma14+DjpB38rCWI9iPGIgYFrlEU3aZGOSkuvyUzBFJOsbwOOgxV/WJzBkpNm6vP3ee+jslVXC5KUOCdd3DLlY5xWrPI7YDg/AwrGcxNTKrO6ErZ3P+j1ecnn5uapb1SN0XHjcdH776lKa1e6Cjj53cNULeVgcTMRQcdIQ8Lx45kCkFRwrUv6JIbZTlKAZpfkgbxB1LNweWI9xjVAuaxfvlyvQJ+bKzXLx0UsgS2tKY4DZw0QeAJRtd/BlK3KARW3ovMoFCLfA48oLtu5kcuYZJY9vTBNCNbFrOn5FS3h/oOItlQNJOqsM17gcfIc+JRw4Ar1lwePDbcKIjkbnF6DjlFpSR1yRkfBDuHNUfiYYH6EGzABmXI7fpgNBT9MBntu9TOfIXnDzLv1/pWyw7Ty3gG0eRQlEzSRwquPmhhlQv0sA25fQZjWLEAwFFCapLQt4kdBZYrZx39LTwx2EEOWZs2RPmHwSAL7zqTADF2ZEkR84nVG//QJSgaUGzQtS3CZBVDKCHa30zs0rR7geAL7zqjJz+5MMPXRxWzk9hzVh4Rd6ZRMgbqQyTitWSIW8+6kl40vC2h6WVUYSibOsjfQT9wf0uGfH+Xt2l+ewjpmD5J16IBUfqVi8EaUfOY5lv29uLGDHOy8JDiBXF7i0K13q8EMVoXTtikCFIAf80ofX9bUkGJKA5VisPrtqWW55aPjSwaZnrotlp1ko0Z+7UioOPkBfIyPOyvQwHxtQQJCnPlIw8G4vTXum/56U8I8TEPpT8VioM+aaS56JP0LjmsQXiiVqhnTSOmdlcjrzo9JSJVhrXtnTK0hITl2gsRpIJPPgIuZdDMBz4RsRdHgre/tyjiy/KwbsuPgYrP3Vl4XXy2TtYqFqtnGPzbl3sc8KsCZg1sStwsuFxNrbv660h23j423glMNRgoNW9LQnhCzSHqzrqkHwFehbaoHFtytR3ty0eWsLzEsUYybAeBzUh1xbtSHMuPP1Wo/F/f5HlNZTEtCch4IOxCiGM62zDPf/4PJx7VFzPIL1KNWhc87TxHcqVtYO4Ja1l/sqbwVXxeBwaipzABoMRPlgelGhmvPEiHNSEXFu0x0eiJg4X9nY3L3gRz5oeI6bfu3dVbvlgcTYLsavhkPG8b2F5Z0G6tSJcnljGaM/F7eibYd1R5OTVDGXnYOztSwwNq7eNXNrig4+QV/MJ+bjONiw4cir+8YUnBGXDgaLEE0NBnqKXTieLVm8HoJvpvffSYwfd9nuel92rEazNuzPxRoye/eht5+L69z5nUO1f98i6aN0zJ+qZ6BuFos0hL+H2YDHSJ8uDEbHT3GvPORyTxzY3O9KBGSQ4B0WEHAB+/HY9oNVwoJnpsDpz9AMTx7RjK5MVa8S2KH9kHu5dsSX9XEyw9AvOyRHZ1IrRaE+diVYayJE3IltyibogLcUIH3/pqfj4S09tatsHHUdelIl+tOCcAvPCwSAv8qO0ltGG5uE1Owbd9kXHz0g/F417M1/LSCuzNXQ2wSGoJOTDj2bEsq8VBx0h5xithPyJj1yO7zYgP6QEd06Qj/7jd/inEI073LFv8KF95zE7cE3JfNHx03PbHio+eJWLab63p3mZcPIwvrMNF7Nn5MhLuD1YyOidX3ntWY2rvISH8xMnQhv40w4fDm5CPgqP2YBz6W6GR9g0FhtZ2pnPmTzGy/itiVbmTB58zGpOvDVCfsqhmcKxGe9lXKc7ceyLOFo1G49++AX41psXqGXNsCOX8W6uKLBlLzF4vPj0QwH4HszDjYOakDcjrsZohjEmJcbtBRm/NZLyomTCDgY89ktRUuxmvBayZd8X4ch/+LZz8cO3ndv4hmsAbZr/d8/TDavzgmMOwT0feF7xhSWGjD9/1lzc84Hn4bTDJo9YHw46ZSfHQUbHAWTPXC14eD1uxOA5Ro8jV+rpLDALHSoyjlw378yzfW86mnQwnDWpC//vBcdj2abBBxwrUQxjjJo2cDhxUBPyg40jBzL3+qK425p0YygElm8Mmmils8BRa6jIOPLR5ylDAc5eftZhDa9by2Fa4sDDwUfJGA5COo4121xmIY1YHj41s2FvdGzlDi/cZzjw61jKs2YEeBrXMXp5li2J2edIBl0q0do4CElZhoORIydocupVWzPPNI2mDIkjrzD5vHIaoBR2Q20nhrGd8Uz2I40HnnbREW94YsMI96REq+LgpWQ4uGM0F3F/Glc81I2PCLQmn+fEvRkcOdnJj8ZXTmF8r0kiV5YoUS8OakI+Gr38hgsaHZ/KzBO1kRnqxkf3a/L5aeM608/N4MiJkI+kZUEMFOvlhNllJvsSg8NBTchL+PiXq05MP2ub3FA3vpVbnOhGE628/blZcodmEPIp4zrws3eeN6RMQ83CWy44Ejf87YVDCoFQ4uBGScgPMrzszDnRMi46aabY6YGntwe/nc445WZlszn7iKkY16C45o1EpWJw7AhH3SzR2hh9s7pEU0FOP1p0PB7YKkZM33T+PM+6ZTBYvGFX8FurxMApUWI04qDkyGePsPH+SOLGxDLi5qfCjDGnzsnc5GOE/EMvPhlvefaRQ+pDUYjVkpCXKFEfGkLIjTF/b4yxxphDGlFfs/G79zwHN/7dhSPdjREByWFnTugMyo6ZkR3vTRO2eJKDf+pl+SE9S0JeokR9GPJyNcbMBXAZgFVD787wYPLYDo9oHUwgheZzlUh8O1l0w2bIqT9wxYlY+akrC+XBozWYWYkSoxWNkJF/DsA1AH7VgLpKNBlnHzEV9//TpZiucORevPLh7JTAQeynVaLEoDCkJWOMuRrAM9baRTVc+zZjzEJjzMJNm8qM3iMJjYgDvu6gWZYjtaDkyEuUqA+FHLkx5kYAs5SifwLwj3BilUJYa78K4KsAMH/+/DJ9ySjEUSye8kjS0lJGXqJEfSgk5NbaS7XfjTGnAjgSwKLEUeQwAA8YYxZYa9c3tJclhh0jwZEv+uBlWLdz30HtcVuixGAwaBm5tfYRAGkiRmPMSgDzrbWbG9CvEiOMkWCKJ41tx6QmZxsvUeJARKlWKuGB3OdHUkZeokSJ+tAwz05r7bxG1VVi5PCLv7oA963YqsYjL1GixOhE6aJfwsMpcybhFObhWaJEidGPUrRSokSJEi2OkpCXKFGiRIujJOQlSpQo0eIoCXmJEiVKtDhKQl6iRIkSLY6SkJcoUaJEi6Mk5CVKlCjR4igJeYkSJUq0OIy1wx+I0BizCcDTg7z9EAAHSjyX8llGHw6U5wDKZxmtGMqzHGGtDbLCjAghHwqMMQuttfNHuh+NQPksow8HynMA5bOMVjTjWUrRSokSJUq0OEpCXqJEiRItjlYk5F8d6Q40EOWzjD4cKM8BlM8yWtHwZ2k5GXmJEiVKlPDRihx5iRIlSpRgKAl5iRIlSrQ4WoqQG2MuN8Y8ZYxZaox5/0j3Zygwxqw0xjxijHnIGLNwpPtTK4wx3zTGbDTGPMp+m2qMucEYsyT5P2Uk+1grIs/yIWPMM8l7ecgY88KR7GOtMMbMNcbcbIx53BjzmDHmPcnvLfVucp6j5d6LMabLGHOfMWZR8iwfTn4/0hhzb0LHfmSM6RhyW60iIzfGVAEsBvB8AGsA3A/g1dbax0e0Y4NEqyarNsZcCGA3gO9Ya09Jfvs3AFuttZ9KNtgp1tr3jWQ/a0HkWT4EYLe19j9Gsm/1whgzG8Bsa+0DxpgJAP4E4CUA3oQWejc5z/FKtNh7McYYAOOstbuNMe0A7gDwHgB/B+Dn1tofGmP+G8Aia+1XhtJWK3HkCwAstdYut9b2APghgKtHuE8HHay1twHYKn6+GsC3k8/fhlt4ox6RZ2lJWGvXWWsfSD7vAvAEgDlosXeT8xwtB+uwO/nanvxZAJcA+Gnye0PeSSsR8jkAVrPva9CiLziBBfAHY8yfjDFvG+nODBEzrbXrks/rAcwcyc40AH9tjHk4Eb2MalGEBmPMPABnArgXLfxuxHMALfhejDFVY8xDADYCuAHAMgDbrbV9ySUNoWOtRMgPNDzbWnsWgCsAvCs55rc8rJPVtYa8TsdXABwN4AwA6wB8ZkR7UyeMMeMB/AzAe621O3lZK70b5Tla8r1Ya/uttWcAOAxOqnBCM9ppJUL+DIC57PthyW8tCWvtM8n/jQB+AfeSWxUbEtkmyTg3jnB/Bg1r7YZk8Q0A+Bpa6L0kctifAfietfbnyc8t926052jl9wIA1trtAG4GcB6AycaYtqSoIXSslQj5/QCOTTS+HQBeBeDXI9ynQcEYMy5R5MAYMw7AZQAezb9rVOPXAN6YfH4jgF+NYF+GBCJ6CV6KFnkviWLtGwCesNZ+lhW11LuJPUcrvhdjzHRjzOTk8xg4Q40n4Aj6K5LLGvJOWsZqBQASk6PPA6gC+Ka19uMj26PBwRhzFBwXDgBtAL7fKs9ijPkBgIvgQnFuAPCvAH4J4McADocLT/xKa+2oVyJGnuUiuOO7BbASwNuZjHnUwhjzbAC3A3gEwEDy8z/CyZdb5t3kPMer0WLvxRhzGpwyswrHNP/YWvuRZP3/EMBUAA8CeJ21tntIbbUSIS9RokSJEiFaSbRSokSJEiUUlIS8RIkSJVocJSEvUaJEiRZHSchLlChRosVREvISJUqUaHGUhLxEiRIlWhwlIS9RokSJFsf/B1ta2JT3IoYrAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "pl.plot(t, p)\n", "pl.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This way of extracting data from the DataFrame is useful for futher computations with t and p. For plotting purposes only, the DataFrame has its own plot-function:" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAybElEQVR4nO3deXwU9f348dd7d3MRQoBwk0Qi9ylHuISi9QBEi4rW0tqKRYv6tf229dcKqK23YrVerdZStcVapX4BBRUEvMUqCIpJCATCHe6bQK7dnffvj51gQCgBkkw2eT8fj33szGc+M/P+7M6+97Ozs58VVcUYY0z94PM6AGOMMTXHkr4xxtQjlvSNMaYesaRvjDH1iCV9Y4ypRwJeB/DfNGvWTNu1a+d1GMYYE1WWLVu2W1WbH29ZrU767dq1Y+nSpV6HYYwxUUVENp5omZ3eMcaYesSSvjHG1COW9I0xph6p1ef0jycYDFJQUEBJSYnXodRL8fHxpKamEhMT43UoxpjTEHVJv6CggKSkJNq1a4eIeB1OvaKq7Nmzh4KCAjIyMrwOxxhzGip1ekdEGovIDBFZJSIrRWSwiDQVkYUissa9b+LWFRF5WkTyRSRLRPpW2M44t/4aERl3OgGXlJSQkpJiCd8DIkJKSop9yjImilX2nP5TwDuq2gU4B1gJTALeU9WOwHvuPMAlQEf3NgH4C4CINAXuBgYCA4C7y98oTpUlfO/YY29MdDtp0heRZGAY8AKAqpap6n7gcmCaW20acIU7fTnwkkZ8DjQWkdbACGChqu5V1X3AQmBkFbbFGGOinqry7y828W7ujmrZfmV6+hnALuDvIvKViDwvIolAS1Xd5tbZDrR0p9sCmyusX+CWnaj8KCIyQUSWisjSXbt2nVprasCGDRvo0aPHUWX33HMPjz32mEcRVU5lY3z44Yfp0KEDnTt3Zv78+TUQmTGm3KY9RVz7/GImzszmjeVbqmUflfkiNwD0BX6hqotF5Cm+OZUDgKqqiFTJv7Go6lRgKkBmZqb9w0sNys3NZfr06axYsYKtW7dy0UUXsXr1avx+v9ehGVOnhR3l75+u57EFeQR8Ph66sidj+6dVy74q09MvAApUdbE7P4PIm8AO97QN7v1Od/kWoGK0qW7ZicrrlPPPP5+JEycyYMAAOnXqxCeffALAP/7xD8aMGcPIkSPp2LEjt99++5F1brnlFjIzM+nevTt33333kfJ27doxefJkevfuTWZmJl9++SUjRoygffv2PPfcc0fqPfroo/Tv359evXodtf6DDz5Ip06dGDp0KHl5eSeNffbs2YwdO5a4uDgyMjLo0KEDS5YsqYqHxRhzAnnbC7nqL//hgbdXcm77Ziy8bRg/GpiOz1c935+dtKevqttFZLOIdFbVPOBCINe9jQOmuPez3VXmAD8XkelEvrQ9oKrbRGQ+8FCFL2+HA5PPJPh731xB7taDZ7KJb+nWphF3f6/7GW0jFAqxZMkS5s6dy7333su7774LwPLly/nqq6+Ii4ujc+fO/OIXvyAtLY0HH3yQpk2bEg6HufDCC8nKyqJXr14ApKens3z5cn79619z/fXX8+mnn1JSUkKPHj24+eabWbBgAWvWrGHJkiWoKqNHj+bjjz8mMTGR6dOns3z5ckKhEH379qVfv34AR94wbr755qPi3rJlC4MGDToyn5qaypYtde592ZhaoSzk8OyH+TzzQT5J8TE8NbY3o89pU+0XS1T2Ov1fAP8SkVhgHfBTIp8SXhORG4CNwDVu3bnAKCAfKHLroqp7ReR+4Au33n2qurdKWlGDTvSEVCwfM2YMAP369WPDhg1Hyi+88EKSk5MB6NatGxs3biQtLY3XXnuNqVOnEgqF2LZtG7m5uUeS/ujRowHo2bMnhw4dIikpiaSkJOLi4ti/fz8LFixgwYIF9OnTB4BDhw6xZs0aCgsLufLKK2nQoMFR24FvJ3tjTM1avnk/E2dkkbejkMt7t+H3l3UjpWFcjey7UklfVZcDmcdZdOFx6ipw6wm28yLw4inE91+daY/8dKSkpLBv376jyvbu3XvUj5Xi4iJPnt/vJxQKfau84rL169fz2GOP8cUXX9CkSROuv/76o66DL1/H5/Mdtb7P5yMUCqGqTJ48mZtuuumomJ588slTblvbtm3ZvPmb79oLCgpo2/Zb37UbY05TcVmYxxfm8cKi9bRIiueFcZlc2LXlyVesQjb2zilq2LAhrVu35v333wciCf+dd95h6NChp7W9gwcPkpiYSHJyMjt27GDevHmntP6IESN48cUXOXToEBA5RbNz506GDRvGG2+8QXFxMYWFhbz55psn3dbo0aOZPn06paWlrF+/njVr1jBgwIDTapcx5mj/WbubEU9+zN8+Wc/YAeksuG1YjSd8iMJhGGqDl156iVtvvZXbbrsNgLvvvpv27duf1rbOOecc+vTpQ5cuXUhLS2PIkCGntP7w4cNZuXIlgwcPBiJvSi+//DJ9+/blBz/4Aeeccw4tWrSgf//+R9Y50Tn97t27c80119CtWzcCgQDPPPOMXbljzBk6WBLk4bmreHXJJtqlNODVnw1icPsUz+KRyNmY2ikzM1OP/ROVlStX0rVrV48iMmDPgTGV9W7uDu58I5tdhaX87Dtn86uLOpEQW/0dKRFZpqrHOyVvPX1jjKlquw+Vcu+bubz59Va6tErib9dl0iu1sddhAZb0jTGmyqgqs5dv5d43V3C4NMz/u7gTN53XnthA7fn61JK+McZUga37i7nz9Ww+yNtFn/TG/OGqXnRsmeR1WN9iSd8YY86A4yj/WrKJR+atIuwov7+sG+PObYe/mn5Re6Ys6RtjzGlat+sQk2Zls2T9XoZ2aMbDY3qS1rSB12H9V5b0jTHmFIXCDs8vWs8TC1cTF/Dxh6t78f1+qVHxfxO159uFKLJ//36effZZr8Mwxnggd+tBrnj2U6bMW8X5nZvz7m3ncU1mWlQkfLCkf1os6RtT/5QEwzw2P4/Rf17E9gMlPHttX577cT9aNIr3OrRTYqd3TsOkSZNYu3YtvXv35uKLL+bRRx/1OiRjTDVatnEvt8/IYu2uw1zVN5XfXdaVxg1ivQ7rtER30p83CbZnV+02W/WES6b81ypTpkwhJyeH5cuXV+2+jTG1yuHSEI/Oz2PaZxtok5zAtPEDOK9Tc6/DOiPRnfSNMaaafLx6F5NnZbP1QDHXDTqL347sQsO46E+Z0d2Ck/TIjTHmVO0vKuOBt1cyY1kBZzdP5P9uGkxmu6Zeh1VlojvpeyQpKYnCwkKvwzDGVLF52dv43ewV7Csq49bvtucXF3QkPqZujTRrSf80pKSkMGTIEHr06MEll1xiX+QaE+V2FpZw9+wVzMvZTvc2jZg2vj/d2yR7HVa1sKR/ml555RWvQzDGnCFVZcayAu5/K5eSkMPEkV248TsZxPjr7tXslvSNMfXS5r1F3PF6Np+s2U3/dk2YclUv2jdv6HVY1c6SvjGmXgk7ykufbeDR+XkIcP/l3bl24Fn4aukAaVXNkr4xpt7I31nIxJnZLNu4j/M6NeehMT1p2zjB67BqlCV9Y0ydFww7/PWjtTz9Xj4N4vw88YNzuKJ326gZL6cqWdI3xtRp2QUH+O2Mr1m1vZBLe7Xm3tHdadYwzuuwPGNJ3xhTJ5UEwzzx7mqe/2Q9KYmx/PUn/RjRvZXXYXmuUklfRDYAhUAYCKlqpog0Bf4NtAM2ANeo6j6JfF56ChgFFAHXq+qX7nbGAXe5m31AVadVXVOMMSZi8bo9TJqVzfrdhxnbP43Jo7qSnBDjdVi1wqn09L+rqrsrzE8C3lPVKSIyyZ2fCFwCdHRvA4G/AAPdN4m7gUxAgWUiMkdV91VBO4wxhsKSII+8s4qXP99EWtME/nXjQIZ0aOZ1WLXKmfwC4XKgvKc+DbiiQvlLGvE50FhEWgMjgIWqutdN9AuBkWewf89s2LCBLl26cO2119K1a1euvvpqioqKvA7LmHrtg1U7Gf7Ex7yyeBM3Ds1g/q+GWcI/jsr29BVYICIK/FVVpwItVXWbu3w70NKdbgtsrrBugVt2ovKjiMgEYAJAenr6fw3qkSWPsGrvqko2oXK6NO3CxAETT1ovLy+PF154gSFDhjB+/HieffZZfvOb31RpLMaYk9t7uIz73lzBG8u30rFFQ5695Vz6pDfxOqxaq7I9/aGq2pfIqZtbRWRYxYWqqkTeGM6Yqk5V1UxVzWzevPaOW52WlsaQIUMA+PGPf8yiRYs8jsiY+kVVmfP1Vi56/CPezt7GLy/syFv/O9QS/klUqqevqlvc+50i8jowANghIq1VdZt7+manW30LkFZh9VS3bAtw/jHlH55J8JXpkVeXY6/vrY/X+xrjle0HSrjrjRzeXbmDc1KTeeTqgXRp1cjrsKLCSXv6IpIoIknl08BwIAeYA4xzq40DZrvTc4DrJGIQcMA9DTQfGC4iTUSkibud+VXamhq0adMmPvvsMyAy+NrQoUM9jsiYuk9VeXXJJi5+/CMW5e/irku7Mut/hljCPwWV6em3BF53e7IB4BVVfUdEvgBeE5EbgI3ANW79uUQu18wncsnmTwFUda+I3A984da7T1X3VllLaljnzp155plnGD9+PN26deOWW27xOiRj6rSNew4zaWY2n63bw+CzU5hyVU/OSkn0Oqyoc9Kkr6rrgHOOU74HuPA45QrceoJtvQi8eOph1j6BQICXX37Z6zCMqfPCjvLiovX8cWEeMT4fD4/pydj+aXZK9TTZL3KNMbVW3vZCbp/xNV8XHOCiri144IqetEqO9zqsqGZJ/zS0a9eOnJwcr8Mwps4qDYV59oO1PPthPo3iY/jTD/twWa/W1ruvAlGZ9FXVnnyPRM7eGVN9vtq0j4kzs1i94xBX9G7D77/XnaaJsV6HVWdEXdKPj49nz549pKSkWOKvYarKnj17iI+3j9em6hWVhfjjgtW8+Ol6WjWK58XrM7mgS8uTr2hOSdQl/dTUVAoKCti1a5fXodRL8fHxpKameh2GqWM+zd/NpFlZbN5bzI8HpTNxZBeS4m2AtOoQdUk/JiaGjIwMr8MwxlSBA8VBHp67kulfbCajWSL/njCIgWeneB1WnRZ1Sd8YUzcsWLGdu97IYc/hMm4+rz2/uqgj8TF+r8Oq8yzpG2Nq1K7CUu55cwVvZ22ja+tGvDCuPz1Tk70Oq96wpG+MqRGqyutfbeG+t3IpKg3zm+GduOm89sT4z2SEd3OqLOkbY6rdlv3F3Pl6Nh/m7aJvemP+cHUvOrRI8jqsesmSvjGm2jiO8q/FG5kybxUK3PO9bvxkcDv8Prvc2iuW9I0x1WLtrkNMmpnFFxv28Z2OzXjoyp6kNW3gdVj1niV9Y0yVCoYd/vbJOp58dw3xAR+PXt2Lq/ul2o8pawlL+saYKpOz5QATZ2axYutBLunRinsv706LJPsFd21iSd8Yc8ZKgmH+9P4anvtoHU0axPKXa/tySc/WXodljsOSvjHmjCzdsJfbZ2axbtdhvt8vlTsv7UrjBjZAWm1lSd8Yc1oOlYZ49J1VvPT5RtokJ/DS+AEM69Tc67DMSVjSN8acso9W7+KOWdlsPVDMuMHt+O2IziTGWTqJBvYsGWMqbX9RGfe9lcusL7fQvnkiM24eTL+zmnodljkFlvSNMSelqszL2c7vZ+ewvyjIz7/bgZ9f0MEGSItClvSNMf/VzoMl/G52DvNX7KBH20ZMGz+A7m1sgLRoZUnfGHNcqsr/LS3ggbdzKQ05TLqkCzcOzSBgA6RFNUv6xphv2by3iMmzslmUv5sBGU2ZMqYnZzdv6HVYpgpY0jfGHBF2lGn/2cCj8/Pw+4QHrujBjwak47MB0uqMSn9OExG/iHwlIm+58xkislhE8kXk3yIS65bHufP57vJ2FbYx2S3PE5ERVd4aY8xpW7OjkKuf+w/3vZXLoLObsuDXw/jxoLMs4dcxp3Jy7pfAygrzjwBPqGoHYB9wg1t+A7DPLX/CrYeIdAPGAt2BkcCzImJf/RvjsbKQw9PvreHSpxexYfdhnvxBb168vj9tGid4HZqpBpVK+iKSClwKPO/OC3ABMMOtMg24wp2+3J3HXX6hW/9yYLqqlqrqeiAfGFAFbTDGnKavN+9n9J8X8fjC1Yzo0YqFt53HFX3a2oiYdVhlz+k/CdwOlP/VTQqwX1VD7nwB0NadbgtsBlDVkIgccOu3BT6vsM2K6xwhIhOACQDp6emVbYcx5hQUl4V54t3VPP/JOponxfG36zK5uFtLr8MyNeCkSV9ELgN2quoyETm/ugNS1anAVIDMzEyt7v0ZU998tnYPk2dlsWFPET8ckMbkUV1pFB/jdVimhlSmpz8EGC0io4B4oBHwFNBYRAJubz8V2OLW3wKkAQUiEgCSgT0VystVXMcYU80OlgSZMm8VryzeRHrTBrxy40DO7dDM67BMDTvpOX1VnayqqarajsgXse+r6rXAB8DVbrVxwGx3eo47j7v8fVVVt3yse3VPBtARWFJlLTHGnNB7K3cw/PGPmb5kEz/7TgbzfzXMEn49dSbX6U8EpovIA8BXwAtu+QvAP0UkH9hL5I0CVV0hIq8BuUAIuFVVw2ewf2PMSew5VMq9b+Yy5+utdG6ZxHM/6UfvtMZeh2U8JJFOeO2UmZmpS5cu9ToMY6KOqjLn663c+2YuhSVBfv7djtxyfntiAzaEQn0gIstUNfN4y+wXucbUMdsOFHPX6zm8t2onvdMa84ere9GpZdLJVzT1giV9Y+oIx1Fe/WITD89dRchxuOvSrvx0SAZ++0WtqcCSvjF1wPrdh5k0M4vF6/dybvsUpozpRXpKA6/DMrWQJX1jolgo7PDCovU8vnA1sQEfj1zVk2sy0+wXteaELOkbE6VWbjvIxJlZZBUc4OJuLXngih60bBTvdVimlrOkb0yUKQ2Feeb9fJ79cC3JCTH8+Ud9uLRna+vdm0qxpG9MFFm2cR8TZ2aRv/MQY/q05XeXdaNJYqzXYZkoYknfmChQVBbi0fl5/OM/G2jdKJ6//7Q/3+3cwuuwTBSypG9MLbdozW4mzcqiYF8x1w0+i9tHdqFhnL10zemxI8eYWupAUZAH5+by2tICzm6WyGs3DWZARlOvwzJRzpK+MbXQOznb+d3sHPYeLuOW89vzyws7Eh9jfzRnzpwlfWNqkZ2FJdwzZwVzs7fTrXUj/n59f3q0TfY6LFOHWNI3phZQVWZ+uYX738qlOBjmtyM6M2HY2cT4bYA0U7Us6RvjsYJ9Rdzxeg4fr95F5llNmHJVLzq0aOh1WKaOsqRvjEccR/nn5xt55J1VANw7ujs/GXQWPhsgzVQjS/rGeCB/5yEmzcxi6cZ9DOvUnIeu7EFqExsgzVQ/S/rG1KBg2GHqx+t46t01JMT6+eP3z2FM37Y2hIKpMZb0jakhOVsOcPuMLHK3HWRUz1bcO7oHzZPivA7L1DOW9I2pZiXBME+9t4apH6+jaWIsz/24HyN7tPI6LFNPWdI3photWb+XSTOzWLf7MNdkpnLnqG4kN4jxOixTj1nSN6YaHCoN8ci8Vfzz842kNkng5RsGMrRjM6/DMsaSvjFV7YO8ndw5K5ttB0sYPySD34zoRINYe6mZ2sGORGOqyL7DZdz/Vi6zvtpCxxYNmXHzufQ7q4nXYRlzFEv6xpwhVeXt7G3cPXsFB4qD/O8FHbj1gg7EBWyANFP7nHRgDxGJF5ElIvK1iKwQkXvd8gwRWSwi+SLybxGJdcvj3Pl8d3m7Ctua7JbniciIamuVMTVkx8ESJvxzGT9/5SvaNE7gzV8M5bbhnS3hm1qrMj39UuACVT0kIjHAIhGZB9wGPKGq00XkOeAG4C/u/T5V7SAiY4FHgB+ISDdgLNAdaAO8KyKdVDVcDe0yplqpKq8t3cwDb6+kLORwx6gujB+SQcAGSDO13EmPUI045M7GuDcFLgBmuOXTgCvc6cvdedzlF0rk54aXA9NVtVRV1wP5wICqaIQxNWnTniKufX4xE2dm0611I+b/ahgThrW3hG+iQqXO6YuIH1gGdACeAdYC+1U15FYpANq6022BzQCqGhKRA0CKW/55hc1WXKfiviYAEwDS09NPsTnGVJ+wo/z90/U8tiCPgM/Hg1f24If9022ANBNVKpX03VMwvUWkMfA60KW6AlLVqcBUgMzMTK2u/RhzKvK2FzJxZhbLN+/ngi4tePDKHrROTvA6LGNO2SldvaOq+0XkA2Aw0FhEAm5vPxXY4lbbAqQBBSISAJKBPRXKy1Vcx5haqSzk8OyH+TzzQT5J8TE8NbY3o89pYwOkmahVmat3mrs9fEQkAbgYWAl8AFztVhsHzHan57jzuMvfV1V1y8e6V/dkAB2BJVXUDmOq3PLN+/nenxbx5LtrGNWzNQt/PYzLe9uImCa6Vaan3xqY5p7X9wGvqepbIpILTBeRB4CvgBfc+i8A/xSRfGAvkSt2UNUVIvIakAuEgFvtyh1TGxWXhXl8YR4vLFpPi6R4XhiXyYVdW3odljFVQiKd8NopMzNTly5d6nUYph75z9rdTJqZzaa9RfxoYDqTLulCo3gbIM1EFxFZpqqZx1tmv8g1BjhYEuThuSt5dclmzkppwKs/G8Tg9ileh2VMlbOkb+q9hbk7uOuNbHYVlnLTsLP51UWdSIi1X9SausmSvqm3dh8q5Z45K3graxtdWiXxt+sy6ZXa2OuwjKlWlvRNvaOqzF6+lXvfXMGh0hC3XdyJm89rT2zAflFr6j5L+qZe2bq/mDtfz+aDvF30SW/MH67qRceWSV6HZUyNsaRv6gXHUf61ZBOPzFtF2FF+f1k3xp3bDr8NoWDqGUv6ps5bt+sQk2Zls2T9XoZ2aMbDY3qS1rSB12EZ4wlL+qbOCoUdnl+0nicWriYu4OMPV/fi+/1S7Re1pl6zpG/qpNytB7l95tfkbDnIiO4tuf/yHrRoFO91WMZ4zpK+qVNKgmH+/H4+z320lsYNYnj22r5c0qOV9e6NcVnSN3XGso17uX1GFmt3HeaqvqncdWlXmiTGeh2WMbWKJX0T9Q6Xhnh0fh7TPttAm+QEpo0fwHmdmnsdljG1kiV9E9U+Xr2LybOy2XqgmOsGncVvR3ahYZwd1saciL06TFTaX1TGA2+vZMayAs5unshrNw2mf7umXodlTK1nSd9EnXnZ2/jd7BXsKyrj1u+25xcXdCQ+xgZIM6YyLOmbqLGzsIS7Z69gXs52urdpxLTx/eneJtnrsIyJKpb0Ta2nqsxYVsD9b+VSEnKYOLILN34ngxi/DZBmzKmypG9qtc17i7jj9Ww+WbOb/u2aMOWqXrRv3tDrsIyJWpb0Ta0UdpSXPtvAo/PzEOD+y7tz7cCz8NkAacacEUv6ptbJ31nI7TOy+HLTfs7r1JyHxvSkbeMEr8Mypk6wpG9qjWDY4a8freXp9/JpEOfn8WvO4co+bW0IBWOqkCV9UytkFxzgtzO+ZtX2Qi7t1Zp7vted5klxXodlTJ1jSd94qiQY5ol3V/O3j9fRrGEcf/1JP0Z0b+V1WMbUWZb0jWcWr9vDpFnZrN99mLH905g8qivJCTFeh2VMnXbSC51FJE1EPhCRXBFZISK/dMubishCEVnj3jdxy0VEnhaRfBHJEpG+FbY1zq2/RkTGVV+zTG1WWBLkrjey+cHUzwk5Dv+6cSBTruplCd+YGlCZnn4I+H+q+qWIJAHLRGQhcD3wnqpOEZFJwCRgInAJ0NG9DQT+AgwUkabA3UAmoO525qjqvqpulKm9Pli1kztez2bHwRJuHJrBbcM70SDWPnAaU1NO+mpT1W3ANne6UERWAm2By4Hz3WrTgA+JJP3LgZdUVYHPRaSxiLR26y5U1b0A7hvHSODVKmyPqaX2Hi7jvjdX8MbyrXRs0ZBnbzmXPulNvA7LmHrnlLpYItIO6AMsBlq6bwgA24GW7nRbYHOF1QrcshOVH7uPCcAEgPT09FMJz9RCqsqbWdu4Z84KDhYH+eWFHfmf77YnLmADpBnjhUonfRFpCMwEfqWqByteO62qKiJaFQGp6lRgKkBmZmaVbNN4Y/uBEu56I4d3V+7gnNRkHvnZQLq0auR1WMbUa5VK+iISQyTh/0tVZ7nFO0Sktapuc0/f7HTLtwBpFVZPdcu28M3poPLyD08/dFNbqSrTv9jMQ2+vJOg43DmqK+OHZuC3IRSM8Vxlrt4R4AVgpao+XmHRHKD8CpxxwOwK5de5V/EMAg64p4HmA8NFpIl7pc9wt8zUIRt2H+ZHf1vM5FnZdG/biHd+OYyfDTvbEr4xtURlevpDgJ8A2SKy3C27A5gCvCYiNwAbgWvcZXOBUUA+UAT8FEBV94rI/cAXbr37yr/UNdEv7CgvLlrPHxfmEePz8fCYnoztn2ZDKBhTy0jkIpvaKTMzU5cuXep1GOYkVm0/yMQZWXxdcICLurbggSt60io53uuwjKm3RGSZqmYeb5ldIG1OW2kozDMfrOXZD/JJTojhTz/sw2W9Wlvv3phazJK+OS1fbdrHxJlZrN5xiCt6t+H33+tO08RYr8MyxpyEJX1zSorKQvxxwWpe/HQ9rRrF8+L1mVzQpeXJVzTG1AqW9E2lfZq/m0mzsti8t5gfD0pn4sguJMXbeDnGRBNL+uakDhQHeXjuSqZ/sZmMZolMnzCIQWeneB2WMeY0WNI3/9WCFdu5640cdh8q5abzzubXF3UiPsaGUDAmWlnSN8e1q7CUe95cwdtZ2+jSKonnx2XSK7Wx12EZY86QJX1zFFXl9a+2cN9buRSVhvnN8E7cdF57Yvwn/fG2MSYKWNI3R2zZX8wds7L5aPUu+qY35g9X96JDiySvwzLGVCFL+gbHUV5evJFH5q1CgXu+142fDG5n4+UYUwdZ0q/n1u46xKSZWXyxYR/f6diMh67sSVrTBl6HZYypJpb066lg2OFvn6zjyXfXEB/w8ejVvbi6X6oNoWBMHWdJvx7K2XKAiTOzWLH1IJf0aMW9l3enRZINkGZMfWBJvx4pCYb50/treO6jdTRpEMtfru3LJT1bex2WMaYGWdKvJ5Zu2MvtM7NYt+swV/dL5a5Lu9K4gQ2QZkx9Y0m/jjtUGuLRd1bx0ucbaZOcwEvjBzCsU3OvwzLGeMSSfh320epd3DErm60Hihk3uB2/HdGZxDh7yo2pzywD1EH7Dpdx/9u5zPpyC+2bJzLj5sH0O6up12EZY2oBS/p1iKoyL2c7v5+dw/6iID//bgd+fkEHGyDNGHOEJf06YufBEn43O4f5K3bQo20jpo0fQPc2yV6HZYypZSzpRzlV5f+WFnD/27mUhRwmXdKFG4dmELAB0owxx2FJP4pt3lvE5FnZLMrfzYCMpkwZ05Ozmzf0OixjTC1mST8KhR1l2n828Oj8PPw+4YErevCjAen4bIA0Y8xJWNKPMmt2FHL7zCy+2rSf8zs356Ere9KmcYLXYRljosRJT/yKyIsislNEciqUNRWRhSKyxr1v4paLiDwtIvkikiUifSusM86tv0ZExlVPc+quspDD0++t4dKnF7Fh92Ge/EFv/n59f0v4xphTUplv+/4BjDymbBLwnqp2BN5z5wEuATq6twnAXyDyJgHcDQwEBgB3l79RmJP7evN+Rv95EY8vXM2IHq1YeNt5XNGnrY2IaYw5ZSc9vaOqH4tIu2OKLwfOd6enAR8CE93yl1RVgc9FpLGItHbrLlTVvQAispDIG8mrZ96Euqu4LMwT767m+U/W0Twpjr9dl8nF3Vp6HZYxJoqd7jn9lqq6zZ3eDpRnorbA5gr1CtyyE5V/i4hMIPIpgfT09NMML/p9tnYPk2dlsWFPET8ckMbkUV1pFB/jdVjGmCh3xl/kqqqKiFZFMO72pgJTATIzM6tsu9HiYEmQKfNW8criTaQ3bcArNw7k3A7NvA7LGFNHnG7S3yEirVV1m3v6ZqdbvgVIq1Av1S3bwjeng8rLPzzNfddZ763cwZ2v57CzsISffSeD2y7uTEKsDaFgjKk6p/uzzTlA+RU444DZFcqvc6/iGQQccE8DzQeGi0gT9wvc4W6ZAfYcKuV/X/2KG6YtJTkhhln/M4Q7L+1mCd8YU+VO2tMXkVeJ9NKbiUgBkatwpgCvicgNwEbgGrf6XGAUkA8UAT8FUNW9InI/8IVb777yL3XrM1VlztdbuWfOCg6Vhvj1RZ245fz2xAZsCAVjTPWQyIU2tVNmZqYuXbrU6zCqxbYDxdz1eg7vrdrJOWmN+cNVvejcKsnrsIwxdYCILFPVzOMts1/k1jDHUV79YhMPz11FyHG469Ku/HRIBn4bQsEYUwMs6deg9bsPM2lmFovX7+Xc9ilMGdOL9JQGXodljKlHLOnXgFDY4YVF63l84WpiAz4euaon12Sm2S9qjTE1zpJ+NVu57SATZ2aRVXCAi7u15IEretCyUbzXYRlj6ilL+tWkNBTmmffzefbDtSQnxPDnH/Xh0p6trXdvjPGUJf1qsGzjPibOzCJ/5yHG9GnL7y7rRpPEWK/DMsYYS/pV6XBpiMcW5PGP/2ygdaN4/v7T/ny3cwuvwzLGmCMs6VeRT9bsYvKsbAr2FXPd4LO4fWQXGsbZw2uMqV0sK52hA0VBHpyby2tLC8holshrNw1mQEZTr8MyxpjjsqR/Bt7J2c7vZuew93AZt5zfnl9e2JH4GBsvxxhTe1nSPw07C0u4Z84K5mZvp1vrRvz9+v70aJvsdVjGGHNSlvRPgaoy88st3P9WLsXBML8d0ZkJw84mxm8DpBljooMl/Uoq2FfEHa/n8PHqXfQ7qwmPXNWLDi0aeh2WMcacEkv6J+E4yj8/38gj76wC4N7R3fnJoLPw2QBpxpgoZEn/v8jfeYhJM7NYunEfwzo156Ere5DaxAZIM8ZEL0v6xxEMO0z9eB1PvbuGhFg/f/z+OYzp29aGUDDGRD1L+sfI2XKA22dkkbvtIKN6tuLe0T1onhTndVjGGFMlLOm7SoJhnnpvDVM/XkfTxFie+3FfRvZo7XVYxhhTpSzpA0vW72XSzCzW7T7MNZmp3DmqG8kNYrwOyxhjqly9TvqHSkM8Mm8V//x8I6lNEnj5hoEM7djM67CMMaba1Nuk/0HeTu6clc22gyWMH5LB/xveiUQbIM0YU8fVuyy373AZ97+Vy6yvttChRUNm3Hwu/c5q4nVYxhhTI+pN0ldV3s7ext2zV3CgOMj/XtCBWy/oQFzABkgzxtQf9SLp7zhYwl1v5LAwdwc92ybz8o0D6dq6kddhGWNMjavxpC8iI4GnAD/wvKpOqa59qSr//mIzD85dSVnI4Y5RXRg/JIOADZBmjKmnajTpi4gfeAa4GCgAvhCROaqaW9X72rSniEmzsvjP2t1kZiTw++91pUPzxihhVCXy61pVUEXVoThUTFGwiAYxCcT7YvGVLweKQ8WoEybGFyAgfo78MFcVUIqCRQTER4wEvvnVrrvsYGkhJeFi4vyxxPliifUF8CFAZN8Hyw5RFCrCLz7i/bHESgC/+PCLW0sdDpQdxC9+YsRPQAL4RYjsRVHHodQpI8YXwF9huxCJPRgOUhIuxS+CH8GPu223alG4hGA4sn6sBAiI76htqOPgoPjgyD4rbt9xwshRy8qfgci6JU4ZfoRYn/+oxwVVwhqmJFyGDyHO5z/qcQHFUQdVxcc37a24DXUcQPnmd9J61PZBUVXC6uA/Jn5VpURD+FWIkeNvv+K9qqJEtqU4qOPgcx9T31FtV8JOmP1OGX4gQfwEgLA6hNQhhEPYcVB3u/HiIw5fZN6Nt3yfASocp8e0SVXxybGxRvYfdMKEcIhVwX/MsVoeY8X6R7fToQwloETWPc72v132Tb2w43CYcGR9IAYqPD6ROiFVDmuYGCDhyPPCke2F1SGIg08jy3woPo08z4467MMhAMSoEgME3GW4z9EeHESVWCBWIYbydRUHpciNI86t4zv2uMQh5G7Xf8xjp8A+UfyqxLo3v3vcqCohlEKUkChxCkmO4jvuY3bsc/HNsVcsSljB3+VSEq56nqpW0z39AUC+qq4DEJHpwOVAlSb9tz7+Jw/mT4EANO4i5Ilw7cKj6wRUiXGftGLxUXbMAGoJjkOCKgFVdgaOfph8GkmCfve+2Bc5rEWVAJGnzwGcEwzbUL7vgELhf/nUUb6f0DHbEVViFALugVLk7t93pE2RAz2gyl6//1vr48buVwgKaIXlPvcxiVGIVaVM5EiM5ev4ibwY/KoU+nwoEOPuM9Z9zMIiHPD5CLvbrthmP0oYocQnBCvsO9ZR4tUh3t3/jsA3scc6kRdp+c0R2O33EyISZ3kSCGgkSZSJUCpCiQgqEkkCbpKIVaVE5KjHLd69BdxtOAIHfD6CIoQ5+jE6lug3j4cfCAOlvqr5NBlT4bmIIZIEC0Uo9kkkVsCvkReyDwgBhRWOZb+7XoxbJwyEJHIfdt+wypfHAQcFiqV8XY68WX7zxl6eiI+eF/eN+RBK6JiHqvwNwI+g6JHtA4gbVwDB7273kESe32OVx+AcpzwGIQYhhFL6Tc+jUsrXDSD4EA4SPrIPcWOLwUcAH2U4lOBUaH35cqEMh/Bxth+PjwTxIwjhSJchclMIo/gRAuIjVnwUa4gijWxlZKCQR0+pJZVT00m/LbC5wnwBMLBiBRGZAEwASE9PP62d9Di7K5mr02iRFEdyIJZG/lhi8FGGEqS8x6WUqUOJhmngi6GJP554CVCiocgD74Qo0hClGiY9phGxEiCIQ1Ad94kDB4ewQpNAQqTnSJiQm6h94sOHkOCPJckXR6mGKNEQQY1so0zDBNWheUxDmvgTCKMUO0GCOIRVCaOENNLLbhpIRIGg21Ms78kFNYyD0izQ0J2PLAsSpsyt0zSQSONAIg5KWDXS03TbEFaHBH8cDf3xlGmIMg1T5oQIOiFKNUSZEybg85MSk0TYjaV8vcg2HBr6E/CJj2D5uhoi6ITxi5/kmEQSAwkoSlG4lJCGI7FrZLuxvliaxjYirEqZU0axU0ZJuIxSJ0hJuIyWCSkk+ONx1KHUCVLmBClxyigLBxERUuIaE+OLIeiECLn7D2uYsDrE+mOJ98cR548jxhcg6LYr6IQoc4LE+mNIiY/8rWVRqITicCllbowh90XXODaZuEC8+1z6EBH8Pj8+fCASeUzUIaRhHHWO7BuENg3bRHpt4RKCToiAL0DAF8Av/sg2xIejDmXhMkrCJW7SlPLXQKTXqCHKwmUEneCR+7ATJik2iYaxDQmGg4Q1TMhtt6MOfvHTOK4xsf7Yo9YLOkFCTujI/stjcdQ5Uq8kVEJSbBIpCSmRdcJBQhpyO6XffNo5avqY+4YxDWkS3+RI/MFwkNJw6ZHHRxASYxNpGNOQkBPiUPAQYeebNgSdII1iG5EYkxj5ZOWEcXDcT2xhVJWUhBRU9aj2lTllBMNB/OKndcPW+MR31GOH+5r0i59Yfyx+8VMaLj3y+Je3V1GS45JJCCQceczKb0EnSKwvlpaJLVH3mA2GI/suC5cR548jIZBAg5gGxPhiKA2XUlhWSHGoOHK2QDUSgy/yBuAXPz6fD8dxjmwjIZBASkIKMb4Y2jVqd1r572Rq3Re5qjoVmAqQmZl5am/ZrnapmfzpxneqNC5jjKkLavobzS1AWoX5VLfMGGNMDajppP8F0FFEMkQkFhgLzKnhGIwxpt6q0dM7qhoSkZ8D84l8t/Oiqq6oyRiMMaY+q/Fz+qo6F5hb0/s1xhhT86d3jDHGeMiSvjHG1COW9I0xph6xpG+MMfWIqJ7W759qhIjsAjaewSaaAburKBwv1ZV2gLWlNqor7QBrS7mzVLX58RbU6qR/pkRkqapmeh3Hmaor7QBrS21UV9oB1pbKsNM7xhhTj1jSN8aYeqSuJ/2pXgdQRepKO8DaUhvVlXaAteWk6vQ5fWOMMUer6z19Y4wxFVjSN8aYeqROJn0RGSkieSKSLyKTvI7neETkRRHZKSI5FcqaishCEVnj3jdxy0VEnnbbkyUifSusM86tv0ZExnnQjjQR+UBEckVkhYj8MorbEi8iS0Tka7ct97rlGSKy2I353+6w4IhInDuf7y5vV2Fbk93yPBEZUdNtcWPwi8hXIvJWlLdjg4hki8hyEVnqlkXd8eXG0FhEZojIKhFZKSKDa7wt5X+yXFduRIZsXgucDcQCXwPdvI7rOHEOA/oCORXK/gBMcqcnAY+406OAeUT+mHMQsNgtbwqsc++buNNNargdrYG+7nQSsBroFqVtEaChOx0DLHZjfA0Y65Y/B9ziTv8P8Jw7PRb4tzvdzT3u4oAM93j0e3CM3Qa8ArzlzkdrOzYAzY4pi7rjy41jGnCjOx0LNK7pttRog2voQR0MzK8wPxmY7HVcJ4i1HUcn/TygtTvdGshzp/8K/PDYesAPgb9WKD+qnkdtmg1cHO1tARoAXxL5D+fdQODY44vI/0IMdqcDbj059pirWK8G408F3gMuAN5y44q6drj73cC3k37UHV9AMrAe9wIar9pSF0/vHO/P19t6FMupaqmq29zp7UBLd/pEbapVbXVPC/Qh0kOOyra4p0SWAzuBhUR6t/tVNXScuI7E7C4/AKRQO9ryJHA74LjzKURnOwAUWCAiy0RkglsWjcdXBrAL+Lt72u15EUmkhttSF5N+naCRt/CouZ5WRBoCM4FfqerBisuiqS2qGlbV3kR6ygOALt5GdOpE5DJgp6ou8zqWKjJUVfsClwC3isiwiguj6PgKEDml+xdV7QMcJnI654iaaEtdTPrR/OfrO0SkNYB7v9MtP1GbakVbRSSGSML/l6rOcoujsi3lVHU/8AGR0yCNRaT8X+YqxnUkZnd5MrAH79syBBgtIhuA6URO8TxF9LUDAFXd4t7vBF4n8mYcjcdXAVCgqovd+RlE3gRqtC11MelH85+vzwHKv4kfR+T8eHn5de63+YOAA+7HwfnAcBFp4n7jP9wtqzEiIsALwEpVfbzComhsS3MRaexOJxD5bmIlkeR/tVvt2LaUt/Fq4H23pzYHGOteFZMBdASW1EgjAFWdrKqpqtqOyPH/vqpeS5S1A0BEEkUkqXyayHGRQxQeX6q6HdgsIp3doguBXGq6LTX9pUwNfWEyishVJGuBO72O5wQxvgpsA4JEegA3EDmP+h6wBngXaOrWFeAZtz3ZQGaF7YwH8t3bTz1ox1AiH0ezgOXubVSUtqUX8JXblhzg92752USSXT7wf0CcWx7vzue7y8+usK073TbmAZd4eJydzzdX70RdO9yYv3ZvK8pfz9F4fLkx9AaWusfYG0SuvqnRttgwDMYYU4/UxdM7xhhjTsCSvjHG1COW9I0xph6xpG+MMfWIJX1jjKlHLOkbY0w9YknfGGPqkf8POkLjq1X1yNYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot()\n", "pl.show()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEGCAYAAAB4lx7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACDzklEQVR4nO19Z5hcR5X2W92TlJOVLMmW5CA5JyFHjG2MsbHBBC9LTssSl4UNn1k2EJe0LHEJuwbDwoLJ0RgMtnHOwrbkqCxLsnKOE7u+H1Xn3lNVp+7tnumemZbu+zx6NN3Vt6puOnXqPUlprVGgQIECBZoXpaGeQIECBQoUGBgKQV6gQIECTY5CkBcoUKBAk6MQ5AUKFCjQ5CgEeYECBQo0OVqGYtAjjjhCz549eyiGLlCgQIGmxZ///OdtWuvJ/vdDIshnz56NRYsWDcXQBQoUKNC0UEo9K31fUCsFChQo0OQoBHmBAgUKNDkKQV6gQIECTY4h4cgLFChQYKjQ09OD9evXo7Ozc6inEkVHRwdmzpyJ1tbWqn5fCPICBQocVli/fj3GjBmD2bNnQyk11NMJoLXG9u3bsX79esyZM6eqYwpqpUCBAocVOjs7MWnSpGEpxAFAKYVJkybVtGMoBHmBAgUOOwxXIU6odX6FIG8QtNb4yaJ16O6tDPVUChQocIijEOQNwm+XbMS1P1uCr96+YqinUqBAgUMchSBvEPZ09gAAtu7tGuKZFChQ4FBHIcgbgF0HunHzE5sAGIqlQIECBQhr1qzB/Pnz8frXvx4nnHACrrnmGhw4cGBAfRbuhw3A3/9kMe5evg0AUMjxAgWGLz5245N4asOeuvZ54pFj8ZGXnpT5m6VLl+L666/H+eefj7e97W34+te/jn/8x3/s95iFRt4AbNydug1pFJK8QIECLmbNmoXzzz8fAPCGN7wB99xzz4D6KzTyfuDBVdvxl9c9gFv+7kIcN3VM0M4dhwqNvECB4Ys8zblR8N0LB+oOWWjk/cBvFm8AADywarvY/tTGdKtWyPECBQr4WLt2Le6//34AwA033IALLrhgQP0VgrwfSITzMA8qKFBgMKC1xpduXYYVW/YN9VSaBvPmzcPXvvY1nHDCCdi5cyfe/e53D6i/glrpB1pKRoBXKvn6dkGtFDjUsedgL75063Lc8OBaPPQvlw71dJoCLS0t+P73v1+3/gqNvB8oW0He0ydHbZ53zKTk78LYWeBwwb6u3oaPsWHXwcKlV8AhLch37O/GvH/9PR5es6Ou/ZJG3hfRyMePZKkni2euwCGO3krj01A8unYnrr9nNc77zJ/wsRufavh4jcTs2bPxxBNP1LXPQ1qQP7R6B7p6K7jurlV17bdcMpetL6IZKBTceYHDBzGFpp54xdfvwyd+awT4/963ZsD9DXetvtb5HdKCnNTheovVRCPvi1xsNuDwflwKFBg4eqwgH+ayMUFHRwe2b98+bIU55SPv6Oio+phD2ti5aM1OAMDugz117bdkBXlvRBNx/ciH58NSoEC9EFVoGoR3XDh3QMfPnDkT69evx9atW+s0o/qDKgRVi0NakH/rntUAgD8/u7Ou/SZeK1UI6UKMFzjUQRTjYBn2R7aVB3R8a2tr1ZV3mgV1o1aUUmWl1KNKqd/Wq8+BYvKYdgDAuBHV1b2rFuU8jZz5lw8CfVigwJCCFJpBsHkCGBxOXoLWGt+4Y+WgeOfUinpy5O8H8HQd+xsw3nTO0QCAaxZUv0WpBuUcrxVOrWzfV6SxLXBogzamMeN/vdEzyFQO4Qu3LMNnb34G5336tiEZPwt1EeRKqZkArgTwrXr0Vy8Ql12qcwQmUSvX3bUK99gshxx8uPtWymH8BQocOjCCdbA05b7BUv09/HTRegDAns5DVyP/EoBrAUSvsFLqHUqpRUqpRfUyMmzZk12clAyN9fZaIY0cAN5w/YN17r1AgeGJz978DJ54bnfw/WAzHTFKs9HYlCNvhhIDFuRKqasAbNFa/znrd1rr67TWC7TWCyZPnjzQYfHO/1uEhZ+6DQ+trm+wTzVoKWUvDfXeARQoMNRYu/0AvnHHSlz1X2G61XowKp09fVXXtx0qjpzQVh5+Xtv1mNH5AF6mlFoD4EcALlFK1S+JQAR/eHIzAOCRtXGPFHrA6i5Xczos5HiBQw17u+IuvPXwVpn/bzfj4v+8o6rfDgVH/r4fPpr8fdlJUwd9/DwMWJBrrT+ktZ6ptZ4N4DUA/qS1fsOAZ1YlsrTjmx7f2JhBc1SQciHJCxxiKGe8Z5yy/p87V/Z7jOd2Hazqd0PBkd9oU1cDprD6cMPw2yNUibmTRwEwZZVieGbTXgD15/Dy+vOplWqyJBYoMJzR0xt/hrlG/unfP9PwuQwVRz6cUVdBrrW+Q2t9VT37jGHSqDYA2b6rrzv7KAD159TyojVL3lUdLLesAgUahf+5K65p+4/37gP1jaT2MdQc+VWnTh/S8SU0rUZOiamyhGSPNZ701plTy+/N1ciH+sErUGAg2LS7M9ON1n8Ft+1vbOxEIzTyx9fvxuJ1u6r67UDLsjUCTSvISVZm0RZ0w6sJpa8F+c+R+4N6j1+gwGDinE/fhh37u6PtvrGz1d+S1hm9Qh2A5Zv34p9/+Xi/cxu99Kv34Oqv3VvVb4fKjz0LzSvILWLa7u6DPVi74wCA+udLzntY/OZCIT80cMtTmzPLmd38xEbszBB4jYLWGp/+/dNVa5T1hv98N1iOi+/8i754F254cC3W7ajOYFrv8YcaTSvIyYgeo1Yu/9JdSbKswb7w/pSG440vUDv++nuLcOkX7hTbdu7vxru+/wj++nuLBnlWRpD+z52rqtYo6w1fsWm0wppFrZTLjac9huP73LSCPOHIIxd14+40CqveHHkeVeJvNQfba+XeFdtw6RfurHv63gJxkEKxcuvgFyBudKrkqWPbs8f3PjfauJ8lSAfjXRuOXjPNK8hJI6/iotbfayX9W0qpGWjkg8yRf+Q3T2LFln341aPPDeq4hzNocR8KQ1ijn67xI9qyx/ee70ZrrFKt3FH2PYzV0a0nCo28AajGkFjvFZT3Jmn7/jeDrZETj/vte1cP6riHM+g5yMne0BA02pietzaFNqHa5lPrjkJ6nfKKvdQThSCvIyjoZig0cv6g9lQqwYM41Br5K8+cAQB4w9lHD+q4hzPSZ2wINPIGP155u4yAWqnxfav195Lgp8jTy754F751d/9r9C7fvDd3YSmolTqiFmql/l4r5v+/ufhYaB3OIeDIhSn+6ZnNuG9FmAK3HhjbYQppZIVVF6gvaEu/bV8XlqzfNahjN1qQ88dIohL9HWfNgrnG+YgaOVts/v2m/pdFeNEX78JP/7w+8zeFRl5HDKVGTmi1WdCCFdp+fNlpRwKQqZW3/e8ivO5bjUmB21qmbebw83dtVnAtbfY/3RR6arDPL/vq4HqPNLrEGlfIJW10oBp5rQuR1H89dZbvP/BsZnuhkdcRee6HHPW+8CSYW8ryYqIBzJo4AhfNmyy2Nxpl68g7VJVUDkX4j5n/TPntXb19DZ5RCj6Vsz5xS937V4wukpQSnxOvlUrkC1EWrdHRWsLzZk8Qf1PP1NH7cgpHFAFBdQTduGoMiXX3WrH/U+ZF/8HVWkNBpSXhBpkjTzTyQpDXDf6V9K+t375+Z+MDU5Kx2fO1vQEBSc9u35/8LSpFvrFT+M2NizfgJ4vWif3z1+N79z8bFebvuPAYjOloFamVetKIq7btz2wfBMeYmtG0glzVQK3UPdeK7Y4eHu3dWA2zHa1lsaknWkpE+QzDJ65J4Wud27xarH77YN5zf6hNu+tbyaatxeXF/XOrhlp53w8fxbU/WyL2zy/dR37zZCBISbCXlPknUyvZgvzOZVvxnh9k1r6pGoVGXkek1Er+bxvltRLXyI3vwlBp5ET5FNRK/eDfwj88uSmzfVD9yb2x93fXVlPyO/euxux/ugl7O+UAsufNnuB89p9neh9mTRwhtufB5/i7elxBSa+vgkJJKdG9MU8jf/O3H8LvHt9UlwW24MjriLSSff7qGNNM93T2YPY/3YSf5VipfdBtpDn4D5bRyBXTyGvqfsCgcaXkQgX6B/8e+wVNGu3Lva+rF3sigtYfu1a++Lv3rQEAbN0rZy0seeca2ITsx9ctNO6utT7vvlz0F5Sk9q7d5UqXulpmpR5CuPBaqSNS98P838Yu/NrtJqlWzX6nWkOpVOsKtppaQyF9uOr9ku/v6sW37l4V1S5IwznYM3gGt8MN86e7BU0GGhSThzM/cQtO/egfxbaQ2qhNktJzHJuxX/FKMu4D8R0qh/TM+pz4f/1phdh/SZmEXFL/1S5e1Qjh1y48Sug//Xs4ZjNtYkEua8MSYqvwt+9ZDSCtJMSxfV9XNEF+xaNORO9DxXcN9b3xX7ltOf79pqfx20gpO7okP3hwLf6W1Ros0H/kceCBV0udaa2swsT+3OpNqfm0RYxaIUqvmtTSHP43nZ4CwtMflJQS+/d3DfHx8xe59pZQLE4ek+abGYYUefMK8nr4kW+JbCUB4Kx/vxWnfTymAWn7UNn+/bfYCvpSgzjyPdY9ak8kKRbXcH7Dag0W6D9y3Q89cTSY2++BZtskERh7THNLF9qPLVUoLlKbP+4LT5gqtifUijjH9O8jRsdzw1RzbSTlsM0K93EjWguNvJ6gG3fPim1YsSXUqDliGvmFxx/Rr7G1NuNHqRUr6MsN8lqxcUhRN61h+JzVFdv3deEDP3oUB2o06g0Eeb7S/i0eTAO3/xzUzAMruR9C2S9dGFnEKH4h69wljdgfd/q4Dq+dpmmUJ0mQ8sVmmnd81txr+c0rz5iBK06eVnDk9QTdy4dW78ClX7gr87exC/+p3/WvUKyhVlJBHSjkvtdKxo3/4M+W1Jw0iAI0Yt0Ow+esrvj7nyzGrx7bgJ8/MnjZHQMe2vcjDzIADt7+259bf43c1S4A/vNMp1oNtSJdlmp3O6SRS+8T9xLKuvT91cgrFQDK7LKH4/vVvIK8ht/m8WLzpo6pcWxtb6r5LLofcj/yjMn+eNE63LW8tpwr5MP868dkQdbokO2hxN/9+DHcuWwrAFmDPPHDN+Nt//tw3cf1YwVCYeO1D6LrZ54gzEPq5ZS9w7vSFh0Onnf7f5oaokaN3Pscsz+UrCDN81rJoj5Ejr7KNLwlFd8RDDWaV5DXcDF97QkwLk6XnjAFAHDMlFE1Dk7BCTH3Q51sA6V2H4+u3VnT8CPbWgAAo9pbxPbhqDHUC79kOdYlo96B7j786ZktdR83jwMPhMEgvuwB7VPjA0Dc9n/+cSme2rAnaNcAZowfgRccJ6ecSOMqSuJ88uaWd+0SY2eV1MpAOXppQ1OxnmjliB/7UKN5BXkNv5VW4Tdc/xBufdq88KrG1KMVrZPgBEDWIFQNXiu1cug/f8T4vR83JbKTGIYPWiPw0Op4Zfd6I48DH6jBcSDwR6q1uAI9x3cu24q/+O/7gnYSXGS895VqOveqjJ0SbZFLrRjQLlcSpDwrYzZHLwjyYD6ysCeX44IjryPyNPIZ402U2UtPO1K88LxQbX+ytXFBHTHiV+210l3jNvykI40P85iOfI38uCmja+q7mfCHJzcP2lh5HHieMGokBppGlrsX7u8WYg/s806COqRHyNiZL8jlQiw+5+4JcjucUgpKyRx1C6vVmaUYSbaLaqgVDY2SMvmThqOe1MSCPP83rzpzJiaNast9qWquaIKULwPkSLdGeq1cMt9QQveu2IaHVu8Q5peO1+K7HBxC+JuLjx20sQJBnWPsHOz8Ohw1c+Q5PtjJ8x6JZKbhKK1z1vv0pEDd+CpxzCuGguzEDIxMPjdCI68kdq/+7bae2bQHf352R8M8rZr2Lc+TvdpGX5ZL+VuhWgU58WUxjhzQmV4r/kt/8gw3SjAP1O+iZ3fi1f9zf9DOu290Yd5wbI2f/Xl9ZgBLvTB+ZGvDxyCExUJkYUYYVI3cdz+scYeXV3i+Qu9SErvhttPw6fMe7+td3/8z7vUKqvizjaUAKNn3WaQ+WC9Zvg3ijsD7Kk6tKOu1Uvu9vfxLd+NV37gfJ374D1i0JlS+BormFeQ5LLmGWcFbSirXayVP0AZ9286jxk6d7bWSp90NFLz/webzbnp8I/7xp4vx1T8tb/hYoRvcwM51+74urI6kMK3WRe7FJ00V59ZI0NzOnTvJzq22RTQv4ZSJm1CJP3lMY64mRB9AkNso30ffauQU2Sl0zw+p2dhaRTCXZsrbQI2dD6/ZOaDjJTSvIM/VyFG1Ru7L0Wruk9lqmr8ljlwx98RQe3M/12qcyj13aLS3lHDVqdMHXZDvtVGnm/fEo2brBf+F7x5gkrDn/8ftuPg/7xDb8oyZ1H7h8Y0tJiIpGfQ8nWMF+UA4cgmJxwYF/AReK+Z/ovHyFlTueQRUcW3t/0qZ5GG7D/YEFAU/IpOj76fXCtFL5chCUgsa4R7cvII8t90YJ4xGnqdhyw9ODLTVjGvk2gkYir30hFpzY+Seu06NU4OdQpfOeTCoBV9gDHTMA5Khj8bKMYhRc2tE2NUL0rNC37S2ZPuDx5CrkQM2d5D5LBVS4f0MtGZn7NoqpZIMjSd++A/iHID+uD+a///qgjk4ecbYCEeuMznySkVjZ5VFPeYeUaO7cxVoXkGe86yQcaJcKkHrPEt27dSKw5ELGoRSyDAO+QKoVo08f2EyW+HSoFcJIm2DXCQbCV9wN9K/N1fYEL2QERTzid8+hY/f+NSA5vHV21cEkZv0PLQmBUXC5/nlX7vX8dTi4D7YYyVPKE3G/WzFpCXyvOeB3h/KZxJ7HxWAYybLXlhaA+cdMwlvPOfozIVk+74uMaUGYBJjlSPuhUQv0Tvtv4NfvX0FzvjELdiyJ7+ox7EN8CRrYkGeL2wBlbxYWeWbYlu5aN/MFQkQqBUr6KvVyGs1DFa1iMFoUI3QDD978zO47WnZ9W9vTr3DeiLmptbIsT54+XwA0iJi/s+iF66/ZzW+fe/qAc3jK7ctx7u+71a6SXYDSQ1Z90I8s2kvHlu3C1d/TS4KzTXy6eNGBO0ptRIPgAOyF7Fq8MmXnyxqvPSppBR++aisIJDylEelvvsHj+BLty5zjyWNH4gaMxNf+sg7fctT5n3YUEV1pkbsVptXkFfxC+7rfekX7oz+UjJWZoG0/TQnuvDgZQl6b/a1Uyv5ixhp5I2gVr5xx0r81XcXiW3HMG1j1dZ9dR+bIwwVb/zuY9wI4ykT0xrbBijMqgEFshFoqNEdZm57u3q99uy5+EUyfPhxE6Hrpfmf3A/zlIcrT5kuHk/KUdzYCeyMpJamXWjMGMrxlUi+c/LMEeevkam80W6iGqVsVJsc/zEQNK8gZzdb4vhIK857SIF8QSv1DSdpVvhSK6SC3tfOQq+V8OY/vn53NB96/kJjTr6lCkNvvcG36Zd8Pr541gMxNzgA+NdfPV7XCkl+zu04vUDCrHHbAz8QjJ5XyqPtp6ToaDVRjyNa3dqbBH7PpGc/2YFGbELJbiSJ/Mx+5vx84zwpVrkU5hvnGnMMdEi51I+4kIS6MdSJyIFr7Shv/hi0wO+OpJbmmDVxZE3zqwbNK8jZ36Igh6tFZCGP+pBGpwQ+gOxu5YTo53Dk0nP/0q/eg9d+8wFx9GpkM22FG1nu7f6VYYj84BYdjl/X7z+wFo9FOOH+wOeBY+6HMUFfT7zxnKOdz0n2wWgN2VRQSsj3WnF/F9uNtFSRxhYAjhzv0jfUHWnEsRD9rCpA5n1X0eyIHH78ga+Ry37q1o89spjR4vq9+9dgqVCohtDWoAC95hXkOe8JbbWq08hrpFYq2X7iuRy5J1tjL95TG4UoOFSzY9AolZQNnsj86YDw2m8+gLtsJkJCIwVYkHfb3+J7v6+2akw14Byp4WG9EH37keiFRlIrfrQuPQ+lyLafPsfuDRfk0rNvqBUVVVwSQUvutjnn3tHqzZ9dW0kjTvpTwCdfcbLcKfl5VxGwc9mJscIV8XfGaORxgy99f/fybXjxl+JptQfqIhvDgAW5UmqWUup2pdRTSqknlVLvr8fE8sAvo6R1ksEvqoYwxDwQ4mN72Q2F4/mDH7o3Rh5UNvecCWSCzr2aYKiBYsn6Xc7nRro7+l3nLcB+rcnqx5E1MoAb1OT2ahJHDRRtXiimY6xTchI3IE45cEEu3z+zA03OLZKegARh3jMQu3ZANh1YUgqvP/to/PXz5wQ0UbIDr0Ij52XbnPkDUWqF7ASxxbJ+KkP/UA+NvBfAP2itTwRwDoD3KqVOrEO/mXD9RuXtnlIqWg6NQ9Kos8fOSWOrXffEWAAFwX/w8x7EfDmvo9pNvdHV62umDRTk3uc8t9H+zkSOHEyFVYukkSccenX0Qj0RapQy5dTTp/HlW8OIW77gyfywuwONZX6kXWie0ulfO3/+8TS2Bm0tpUCz5e6BFZ3t1Ra6Z9L4Jl1BNEQ/Q3lT/VQa6oUBC3Kt9Uat9SP2770AngYwY6D95o8LnHnUePz9i44HEEZH0mWuxq9T8gOPtQH0YOe4HzI+7aM3PuXMI6+Qb97WMM/1kl68wTB2Thzl1kdspADLC+X2R+5/pRwpQ575n4RVTBgkLoAN9N+P8fNUfjDLJvNFz/UOgKNOxsLTHY+NDA67VIWxMcrhI8fYaefZVi6jr6Kd+8vzhZvP7pitbBcTo+Ro/Hj2w7gLZrVy/OhJ9Td0AnXmyJVSswGcAeBBoe0dSqlFSqlFW7duDY6tFURfEN8WcJJWmLWzLVhMW4w9WGK/cK3sgEzNGAt4+t0K5opH3V8yfwraWkq5UYM+8mQzcZrE9zVSS57tRanVGlxVC/yuwi2+297fxF0xrRSwHHlZquRuNfJIUE49EaPiKPLQvw7h5/h1iyouyDfeV0ttZPmJV2PsbLfvPNfKUxdJeQyuMccCqrKMpanLsXwNqjXHNEqxqpsgV0qNBvBzAB/QWgdWOq31dVrrBVrrBZMnTx7weERfJMYlQSNXcG9KzNCQxVFHo7xKwC7rHvgdL8hDm8Ed7rGFSXV6cF54whS0lUvBVjRPq63G0OsYW+sqTLN3EyGPXbehw+RGOd5A/TUs5S3eUtqHRNCX0PByYFLkppmbzQWSc0+yFttomlemkUdD6BHnmJ35RxZg4qBjO9RUIw99tkmnj0VTc0HbE1koEvdHkVpxXTD9n1RbnKZRj0VdBLlSqhVGiP9Aa/2LevSZB1qBiZMMOTOzFeIVuflvaItz7txJ4Y1jH0/48M3C2Ebj3rDrIADgQS8nuJXjjkGGAgYApkFFSlflbct9gSZpWEoB5Qa4wvmXKi9M3h/7QHcvvnLb8poThUljZ1FiQO2BVgTp+hPbQraReKpVhZZSqaEaebiAmf/JLpO3wMUWIem3QPouxSOV04WkpQqvkVggFxnooxy8HV8KvqE5xuxWpUyNHMn4cT/y1JgMSBq/cKIChq1GrszVvR7A01rrLwx8StWB6IvWSLQZbYXeev4cPP+4IwC4N76jpYwXnzQV08Z15EYISpnWSsrlhx1h6m3DzPy49mB+S5ybf3Nr1chDVsl1vaznw5PH7+d5lnzlthX4wi3LglSm1SDQLDMoMaD/1EqWRg4o0fbADXKlBqVGIIQLDT1PSixO7P86KyVF1GMDGX7k9n/SaKXrx92AQ/fC9PiScDzn0IE08KmrV6BWctwDAYkj93Y0/vXj1EuUI69Okjdqp1YPjfx8AG8EcIlS6jH77yV16DcTRF8QtRIaO3XCE7/EhgT3eMKUDDixGoSEFVvcUHMydp57zKTku84et29/q8W1Q4dvlaz0eV4rOVpvqj3YRU7Qiv+rv1qx97lW7W/HfpO97uF+JNfnC2x7S6mKrJL148hTjdvsdOLCzGjkWYJ8oHaDmEZNHHlskYkdr7XG3Mmj8JbzZkcXMS7EPv9HOVdJEiIv9MF9+mPG2kSjz1goAGDJ+t0A3GpDqV2KDLLe+FnUCrt+kmLlUD9K7r9ajXzL3sakd66H18o9WmultT5Va326/fe7ekwue1xzcyiSzt9GkxYByJxaRXPjiuzxwn/r9q3tNjC9fN2CdsDBx+ABDtKDn6uRB/MTzp1p5H7/X7ltBT5/yzL8vB9acW46V+/3fjsFOf3ikedQK2joD10xH0dNHJmfjKwRXisxgxw3+OXwxAOlXWL+84likrNTEUsTQvYYoXbuR75pT6fTB9+NxM6da+RZIfilDI8gEqK0w+YRmqlGbs/Rp1b4QhKlVmRjJ33ixTUCjRxDi+aN7CRqJYmkE4SxvbqtLaHWnuQXloI7vJvkR4dqpEYvQk+lErRz9HgWdoBpMDV6rWgNTBjZig9dMT85F3/+hiOXPSgo10VW/u2ssTmy7AtA+NK+/HTjmfrKM2v3UHVfKOmFcz/71EpXbx/e/t1FWLElHkINZFeRidFhXBiVcwKxYi5+X7ltOdbtOJA5NyBul1CALU6cvcCF74qO7g6pfxJyhK7e9NnxNVapj3KWRs4XySxjp/08wVKa7g7bTWqV9Q7FsjeS10vMD18B2N9lzruz1313stIHDAaaV5DbFTihVnpDgUL0BkXC7WEpVrVGwiPnVUSPBRvxVZ4nlSdjKJAWCOY7hlAouOPlBWMmAT8x4xPS3YbUHq81mo/QA8L9nLeNJ35zZJucwOnXjz2HT//+abGNey9IC6B/33xq5bG1u3Dr05vxoV88LvYfmzPv2yzgAq3DeGox8jPHM+Tx53bjC7csw2VflMO7uZyI+1lb43lwT9zPEkedXFOpOo5G4IXF37eU+pAFMczhuPKU6Zg3dUw0Hzhp/XnGzlZxh222FdEaABWNt5w3GydMHxtNtmYW4ThlVyop/OaxDQCA259xXairyekEANPGduT/qB9oXkEO8lqx1IqoZZi/715uir1+5nfPJO0VrePaFXxhFG7F/Nv2M1ZIgWvkLzv9SNNHhCOXAijyBCwZcmN8IO02YkmUYr621SCsb5hHS3lb0GRxkft//48ew//cuUoem3Ula8XuZ1+Qt1SZB+Vbd68OM/Qxg5dk0OMGO0k54HOVvGJuenwjAOBgj7xLamU0XiatIy5w3vMsGPuINpC0aaMYuBGgXX1cI+carQpKJ1IfU8a2o6OtnBlZWSoprN6237mX1bgfQqfBWtI50ydJ404Xophrafr5vZcYxez0WePDk3TOSX7GfE2+XmheQW613rbEjzzUzujG0yo4gmmBRpBHkuR4n7t7wwfP30rxl5PfwzRbnqc9IB5AkSdezeEqygfS/JJtpndtqFwWCY9aEGp30tx4u7+IKPu72hcRJC+8EgUGffzPvzgNQEitJOHVOUP/8KG1+Mptbig7d/GTkmZRl7RT8oUB/+wrHQAwyYuQ9cGDy7IiK6XIzrx7whWLmPuhgkrcWQHgd0s2snbzv+G4ZWO9tjvksmCMTQQpFJ7ZuBfPbj+AOR8KzWyJzcuWtFu6OaXIjPIU36WSJ5m00PE0ti1lFTWSKwWMbjcyRHJ35ogpSbsiqakHiuYV5HB56sBrhdEbV55qvFZefsaRSXulgmS7mGfs9PsmjRcA3nvxMQCABbMnenOLbwOdrXBGbok43KIZkpcCCRwg3FE8vdG8AGT9rwXBA5sz95DWkb+vauyAkpJfpsTPuM8fWzb+Sgi9ajzqxOuCn3eLEPnJ2xf8+61Yttnl6U8+chwA4KQjx0bn9M4L52L2pJFxjtxel8Bskeu1ki5AWoe/Tw2JqSDvdIJxvGsTsQHEaKkKWwmkHYlv7BxpCzPw3yZV7iO7VA220GXsCFrLJezt7MUTz+0O2ktKJUrdm7/9kHcO7niDXSu3eQW5tp4ZVlD6LwYJeoDlR+A7Mc0qitSoVfJPl55gUmK289Sc9qEC5LSmadpO2JcnW4PyQdROjA+0Cns0LwS5TZ4yY1z2QNLY3ue8oJw4P1/z0K5WnPVCwuTW8Bfg2PWQ8PCanfLYEeqETrxUUti0uxO/emwDbn0qLYfnC88/P+v2Ty9+rHoMubxKBslU0MTcD92+ZJtPtp94SanEvgEAx7FKUK77o2zs1DQ/wcfeF9Q+fGpltM39PXl0msWQ+o8ViObKTbjQ0fxVMsZV/3VPOD6Arftk98Ewo6nbTvnKv/OW54nHDxRNLMjNjSFq5WM3PuVU1OE8tpS1jW68aFwJeGBZgwF4igC3b3ogkjqGjseM+V/ZKkNZXO8ND64Vzj3bmAmdakdAKESoQsmC2ROCvmn82PYyyKUe+ma67d5num4rtuzFrgPVVR3n8wJoJyNrXTSGRBPQPenXboAJm1JJCVRe+rJToMovWH1Jn97q8jRPmlIshTIXtn5f6XlS9r/s51nagTqCXBKClr/+/fufD0DeYaZxGeE5UD5vE/XqP1vptZPA7ysgpwrOyxdOuwppoeORpYu8BdwfP1ZlKVD+hMXsrefPxsXzp4jHDxTNK8jhGjsBYE+nxz/Zm0qaK4XUAylHTiG5+1mdQ/85lIxLvqD23QtpVqPbzUrMuTFOEYjuj+zvf/5l6GHBXyz6HLQjHrxA9EZMMf3U757GmZ+4RWwLNI+I4ejjV58EQNDI7RO3eP1unP5xeQwzZ1mrA5jnSITWIc3QPz+i2vqz6+WCWgpD94UN4Bai9ufqRwJSf7G5mcXbeFXEkkpV680T5jpxvaCkHWoQHu+58hIkY2HSB2RjKKc2CGPa050Jp16AdMH5zeINYv/+nIDUoCvtGPj4j6wNBTl/rsiHPfyN+zlL+WsEmleQa9pCp6fwA6u9cuoCSLm9L7FczMlW1bZd8eW7Wd/5woruCfmV/u99a1i7Th78jtYyRrSWnUUm9XBQshU9R9BoIFNQp5ynPH96nGIUwzfvXu0IIY58VzbzOa1d2Q+pCdkg6NsWot4PkI1utAhVQ61ceoKrOfGxRa8Vb/sPAE+xyEN/TD9rJD1zsZmRL7eYy4TvFpTsxcQhRYYaIWg+S6kPEkNjOQyPJ5ByESuVRnRfzN3XWQS7XFdheziA1IPHiey0LwVp62/9zsPhGIkNIb4QSo8Gv/ecXhLOMB1PeD6q9FDsF5pXkFthyfMMb9xtNG5OXQCuxT853l5Y0qjXskAMunHEA0rUBz10x001v5k1YaRzPL9n7a2l0OcVca+V/Hzk6SIAZGyFI65YMU2+GuQazuz/sTwv1RYsWrs9DIxx8lZLgpoLeiXlzDD/V2OImjnBzRudF7npCxvA8y32hgxedHtdYvdEI93BZQUEiZ4n9iNVxpE48ExaAukC1R5JWAWkdF9eFfqYj31czqX9A26UJofp38zvObb7pi6ikZvJ+ApHjHarB/nzIwXN9xvPo1YqTGY0As0ryK2w5PULb3t6i21ztSPp3agkWmv84l52kjFkxnKZAKlxiieMJz6OsOtAD757/7NB/2lFk2yNXCoVxwV17MWMFb5QSv6+GtAx77P+tDFhGq02X+U4L/riXUEKAa45ScKUL5BKxXc6/aFW6BAKIosWJ2A3nufV8IeMCePYPdFWmoq5SByNPO5H/o7nz7VjCx5e7HmSjO/UJmUe5EbozCr0kA3Fya8jryI3pnLwEP3UmCn3kbwzGW6rSgFffs3p4bHJ9TX/XzxvcuBdlJdMzgRdFYI8AAlLrpG/yoZ9JzfG/k+r7PxpY5LfpgFBct8AktVdFEZsZVbKz27IRw9BN528VnIDOCKGmygfaB9qem5iuZnzfLnl2pXmuymk3UXmHit5Vssu4Lq73MCgVOuVBRaBBEqMIqvGhz0apq3knNV5leoDjS22wEnXnD0vUm6gcG7+uZj/o4sr05aldhKSgMyRO7RT5L6QVp9NiSl8wtpWYu2E02eNd7yu0ndCFmnmHM2/LC+x848NOfD0+qaLmR+jUI1GHltk6oHmFeQwF5ZHvE0cZYQLN14A5uGeMX4ETjoyvfGVirZ5KaS+zZeUIlfiDJ1ds3bd1bgxFABOnD4Wp81kYzMNqpqKKpJxijxegCwLvaxhxbj1YNyI0Qrg/rry3GMJu6pWyeEGfJhDU4HWImUgDDRTtz96IWPUCr9n8cRNEPON87El5HtC2UVGONbxcioJ7rJs/qJXhre4SrsBWvwAOcCMTos48pUsIyi/L/ev2o6H1+zEHUu3BHNIOP7I/EoKeOO5s6PFkfk71+4JU8q9xJ91v7xizEvMp258pLsxew1ayqEg946Rnr2CWhFAWmcrMz6QpsLTYhLMix8mtuoRjDapBmP6lray/i25f9V25zNvnzS6zeH1uBVecqMLNXLZXayUoUG5Gpbbf8wI6kNyQdSeUIl5AKQRrf3XyH0E/soZ1EpJolbod5EFjP88HtCjsHLrPqzYsi9IwmZaU5wqLN6EWHEI6frwHZwYwMY4Xomqo75bI4tropHHjOdI3yV6J37KaK/0vqRnf/MTm4I5pDsK+b7Q8Vu9VK+V9NIn8Asw02LzhydT3/3V2/Z750DGWPf8fOrmaptWg65r+r6aH9y9fCtWRdIIJJ8z6NhGoIkFeRqcQaAb62vkgMn0t+ug62deUgq7D4Yhs3SDiLaR8idn8V0+R95WLkWzH2YJQ4JUGiur7BQ9tDFqhbaoeRy5VGHHESpKSPiVXLvIIpg9pINXnOFmSOQCS7xu9n9z7nH6oxpqJZ7KFHhmk9kpvO+GR1nf1J4azHjkbBjCLdMj0tT4LijL0GrKzMXPO2YzoYRT1XitiBAm/cSG3eHvlOxn7r+vvoufFjTm9pYyunpcnl4p5SyeXHki5Uv0ZmLKCQAcM9k4MCTvPduNAakrcZeX64WD3yMe/9AoNK8gh5vGFkgzskmc2ta9XbhjaZqxjDjy6716m6ZvgzgH7W7zjp86GpefNC2YG6G1XHIDhpgwFF88bz6+K166FTaf5a0w8wuO8L152rFUhZ4Ly6ycI3mFeqsBt38ATF4o2dvHLaIr7XQgzklCVt+Em59MtU6+y7rr2ouC/vIW50RmCFPz/bTjpd6oZqc3Nh2bYYA2Qi6usXMZdOyU0XjJKdOc431Hkiee466B6W6lpRz3uqE+Tpw+NimqTuPT8YR2TyOHNWaePSdNldHRUnbHjylOyQ7efN6421AyRJ/4XnBnHDUeQBiQBACzrdODE3woKJb1RvMKcp0KE0qSRFqvf2MkUCTYaBZ4QDcmoAeESDouqNtaQo2bj/3Yul2JFmeON/8nRrsc+kH0kGAceF6uldiLvWzzXmzZ24kYZI7ceyki6Q1aYruZGlTymOEqFkHIvSfk5Eju73zMnZz6dmeFwWehpEwukAVHT8BCJlR8xLTmrIUuFlXKOWrJWycxQNvrKbkncirup4G3kMvv+l479C7FwHcrWYUbSFT7ni+pIOQaeSnIia4AjBvherK4x5s5rNiyD5//49Kwf/v5t0tMoBFRM/z6AsBVp9qMpnyOMJ5r/3DZPDO212b6LzTyABqpsLzmrJmYOrY9FeTCCn7lqdNxDHtRK1bYfutNC5LvUgMGbUXlB1+TCmPRWvb4OriCfNMeV1g6XghVUCtiJjdk5w4hC73UTp+f3LAHCz95W3AsQap5ya+txEPnUis1SHJfNnAeulxS2LC700s3my4ykiE72YlEJDmfWixfSexl9D0bOlrLrieTr5HXYDvg3L8UEOTbDmLtLZHnxY87kDI/8nvhG5r5DvUn7zw3d/7b93c79833+PGjQ31BCpjYjK6e8J2bNLodnw8UOwNeHOO//rTCmT8f/9+uOhEAMMoqeT6HLsVIJHSnsBPN82iqB5pXkOuQviBON7lx7MKNaW/BPhYtRgECZ8+dhH+98gQAzFjqPfgSB80fqrZyySsE687Nd/fjxqGSwDPn5dVO6pFmaeRWmNFnt39UhezalfFMd0B+od6qxhdsA4C5r9v2mTwtH/z5EmFuhnaKuZlFg260xtWnH4njpozOoFbkufrKg9mlhcKIEAsIyuTIlVzc2N8lhYFQpJjE7wlp+/K5uRp3V08FO1menIpOF7jn2fw93NU3FaSpcnTBZ28X22meWqfXSPIjP9Dd5/rp63TXMH28SVudyAN27/w882Z8dwYUG5Iqhu4ineQw8iuOQd4l019FZKcAX+vlBkVuFCOMbm9JwunN8amLoP+A0z2I8by+oA6oFTN4gn98sdludQcPhk10nyPs5LSjcRfApD1mDK1SksuVcvjcpd2E1cgjPvjVpJAlhMVCkIx9sMcsyr9+LM23EVBWkbnFZlDR8QWKC5MnP/bi4Nj0ZTXXvLWsxMRShHhAUMY1B1W0iixwdn6xdtol+UOQRl6OrFJEWxCWb9mHR9buStuR/oCEHacS+QJMhRW27XOFMJBeO0ptQGkiJPsE3XcSzNwrJKlRUHE18pJCxLkhbQdS2wzdP3+Rlpwg6J2X6Ex/t9YINK8g1+6FaeWC3H7Hr9uItjL2d7v5G6g5zWlOL3qOBqPDRUSqVpKMbTOmdXb7D1Z1XitiPnSk27gHPNdH7jMrzb9aWUopD5y5sblL/D7NPboIVje0OTbqbyxH5PIFUvYjl/tN21PbQihQ07FHtYepZv1cK62epxK1/+0Lj5PPzfud1GYWz1IGR67EXCLUZ/bzrHDb05shwShNGUJIZ2ub3B3Ydy2k8U27+f+PNv0veb5IVOkHLjXXkQQ53zWQiyRdfy5I24RcKT4HT7/p8gV5opELSkqiBJiPkrGzkWhiQe66RG3a05neeJaUitBSKjnbNa7RJ1GInrEzVs2GtqKEu1dsw5Mb9nh9p+0kyA8m2gO9eLKbnP85KyUnAHyF8X3J/FXc/bBajfyN1z+EXz/mVrsPNPLIItEa8ZCoQSGPenZI/QKuwJOMfiRQYqdPAk1OipX2DZji1/6xvD3wc7b/Tx/XIc4/a7dAz3NSji1Cy9AClufbH3MvXL8zXbgPOEqPnPCJG2izDHn82vieSE677WPG+BEA0opeUlwIXUcqIM7PKFDMcp45nsYWCNMQ+By9FCORRa0QCo5cABfEgNkyrdtx0La5NwYIa3tyesSvpBNolYKvNB+bbni6gruLDD2QB9k2EHb+fX0aq7budwRmqJHL2htfTBzjEVxqJaaZVoMHVrmVcvjcsuqd+otjenz1i0oYkJS+0Pet3B78nlMQUhrbrKAbmgtdt7ziBy84frKXXycdGwh3ab4wjS0UkiR3F88SNu3pxOJ1u9K+kc5NKpTip02QFRPg8pNTl8INu3hUJEQxzQUlfx8uOPYInGld9KgdMNeGXAL98en8gNTY2OZRQXwx6fCUI9KIgVQQ+4pASSnXTubPz/bf7qUh8BfxO5cZN+aHV+9w+iDlxhwTauSF14oAn7cj9PZVRL9N35XQ0ciDtnSrClRvLCRNx19kSNMhYc05PzIa/d2PH2P9uwP4/txap9togmRszdpRVAtfi3Ay3VUR2RkTiISs9ATVZBh0f5DOOcujJk6tpJ4V0ahR+9mnOHxh49tNkCxwxKHK/WdRKyWVVj26+mv3BscCwNa9nXhq4x5+eJWKicLzWLlCLjRjAXDk/qfhKhW+r7hfos+HT0s9bef/M+sGKXkMJbvc7nSX67/PIbUCPMq4/RgV21a2dTmZYsbHP9IaU/1ziBV7kbxu6o3mFeSRh2tvZ29gBQeA79nsgyu3mhwRDkfu5aDgL2Us1FviaHsYp8Zb19kUuX96ZkvSDtsH9ezRbQ5ihS2cYCjP1c1E+ZnPMYNkNfArFPGHPisoJ+4h4X7OCs6JBUqVlBJ9tAPN1O9b0xzl8ZLiA+JOwyCtxeqGynNPJNMua+TEr8Y0cmlqXBCtYWHn/uSUMgU7pPMCsqiV1FBK8F3rJFogdQ5wd6AtJddjh2u0YS3UUGMl/23SfCWPIb9upwY3RroceUwBOMj4dT4+lW3kCxUf/+J5Jlf9tHGpQE+ePcEBQfK6qTeaV5DHtnuVimjlpvzEm/cwYwsZRzyhw40bMe8HflNed/ZR5vhEI3cXmbfb9KGvXWh+xznyh1aHD7Y/Xuh+aKbOy0798pGUmiHOMpaudiDGF74IyWXF3C1mLArx/RGjH0+5ECtwrJR875120dgZ13ppbqSRx+wKdFvX7jjgPEu+1sXdYU07kvaSilNOa3ccwKbdftwB7NgKi7xan+7YCifPGOv0R+cFxG0+5ryVk6zKOTftasN/d+nxADwOmt2Q1rLyfOhTQblGyDOfUmbmE0WNEnUlCcIRbUZ0kUbOFxsS5F+2/vBcEE8a1Zb0kXLg9APzH1E6vtdKen7uQkG/yfUjL6iVEGSY8rH7QI/ot0nRn0eO72AX1qDsbcU4xy6WYvMWEaqAzhcC3j7ScuREo+QFl9Az8NLTjnT6TduNoKZ+AWDXwdSv1xemeRWPaoETlBPhkvkDHfNqiRlD+S2N+YEruIWjE82JtZsQfXkR6a1oJzMe7z9m7PQ5cuLoewMeNeVpu/tSpYJrnWKZOvbsnPNpN0grr/ACF3Sk8X+XVazyg7RixZenju1IFoIv37YsaCdIBSpcaqUUuuYhTtP51/b0WRMAgKXUCAWhz5Fz5YnOlyhNTgcePzX1b/c19njOdS2293iLFRmb/WsTO/96ookFuRYvzLfvXZ0KKvaDSaPNStzdG3LocY3cvDyPrdvpCBUpZBnwqBk2N+JF/+PmpcncqX/KKcG9IGgkog8kY2dJAR1MkJ919ITkb9KwYpGdA1DI3d2KsMglLnzKvSa8HYgbQ/nvoxy5Aj54xfzke1+zSgNjZK0XABZ+Koxo5cbOGIdNt/WdLzC7rE562b2xbrEudDv2dzvHU7BSLd48qWKicOS4kJ/lgoiMoL96bEPQHqO7aF4A8MozZgIw+U74+FwpIlvPvSu2JefG38WYD72veMWMiaHAt3Nk0ipx6e0JNXIqOCElCePUXpqbyb23JKjJF96fHy2I3ULB9UxjZwMlefMKcrgaCj14XT2VlDNk7e1su5S88PYXAUdO7coYER9YtQMfu/GppC9T7SPtm/KVbGJ+125kp3sD+WvUacOMeWZGegjavcCGtN1MjlMrjoWeCSRANm5Vi4vmTRaPjVIQti2WYjfJjR1pnzAy3frG3AdNib8SPvJS491A555PrWSfK1FSUmIqX2s7cpxxkeOLCBd2ZLAjSo8vQi2lUk3l/fgi8GMbAs8Fur/IACa/Tzp30shphyafNwC86ERTFetktuPx3Qs3293M8i2pvYk/462lkvPMckHJ8/L7cRvUg++nL+1giSM/wKkV2z6yrQWTRrXhNc+bZSdgj1fK2cl198kcOAWzUR1en8Mn6qXHczBwjZ1w2vj5NQLNK8i1K0z/9aoT0jb7v6MlJNshHfCdoUYebuXc4sqmlUBFn3/40LrkeD72aO/B9IUC/46fQGuL1WrFwhJGM0j4PCf4xDVeZXnd5CkJUvALzb1UUrh3xTas2sqKDNjdQCyvR0qtyBWExnaw6umRhFw05aBQAmuXjNR5exESxlJiKt+zwt9++4mj/uOaUwGktBoPA5c48ixwjXDWxJG44NgjsIHx6HwnknV8rLCE1qm228beE6kdAN53ibFv3G6N94Gxs6xEjx6l3NKMPUHAjfmf3pfXW9uT5PXhe63wSG3ADxBM39hrL5+Pd190DACgO5ItdYx9Bkk59JPw0XspvXNJRtKKfP6NQvMKcrhaAv39i0efE/02U4HXF3i1+LkTpIXAGVu7ARJ+wVYT6p1+7mh1fWf5QjJr4oigf5/TlELlaW5//LsLzXn51VJUhvuht+3L8mJpLbkXweXIzY7lks/f6fStwH3zZQohK6Xq5SdNw9lzJkYXgSSCz/f/Z1xmlh95DFQ1SsycCBrb/C8ZxPilGmOFke8JRcIsVq5Ngm+8v8dSGqmhL32e3nvxMdHjM5Nm2bdBMuSZU2A7TCs1qIIT7cIIflQrjVZSyslOKEVecpCCJBk7O6yxc8n6XfYcEV1MUsXJzI3ywYS5VOj8TFbUc+ZOco6n/kVjp+1ApFbgHt8INK8g9zTyI0anW3IpjS3XoFLOjR5eV+jkJYL3x772cpNLZXnyYOdEutn/lQJu/JsLAABzjkgzM/paq+RHnjxUouEFmdSKLzOytEM/kRLnKyWfYHqpo7mt7dnHcrFobQKo2lpCg6C/BV9ky+ut2rrfjmW+N+PH/chjoPtaFsvIuc9EWruS5/pIr0eqHLj90CIX0l3Z86JjAVOvEuDBbeb7klKJtiz1HfXtB+d/zR++Dzx/3uccMTqYnxtFrYKoR9gxPnfNqZhnDY7d3kWIvTGpohEqZmQLMLspRu+US+hh7pFmfHex6vYVNzZmC3Mv9RUIqQA1KXeiH3mOPKkHmleQw70wxzFrNF+BCTx/gv9C+7kT/BcnHNsV1BRSvIryF3uCHjBVTyjaje8Yxo9sw6vOnOlp1HbOtPILwjCxoJfDh4o0qBi14guNLF9uiU+lufPov/T3Kc8MSPy8+T+v0K+UK8U3ep0zd6Kdi223/5PrZV4gVyz1QswbB3ADfoDUxuFv7f3z48LA9F+LRk5jmz5faYuM9/R6Gi3C3R9vb8lYPGNCjtr5u8R5btPuUiutQn5+mt+k0e14z8VEbciC0of0Pvu/9Q2uJme6vMNu9ThuYZ1wFqOAVks0cndna6iVuEZeBAQJiHmtAK6wIUgX3+fIs5Juuf27nCFp0289f05yvH8sD/v2dwwtJZUYxfj8Yxo5N7b6CX6AUDuIuR/+k/X8qCm6kv5QaSiz0067gUSQhdsBQy9EtEOdetzEPUfMsXNtSa6eYCdFGjnE42PnVqHrJhg7fYObH8btL95rbRDYzx8x0Yl8N5FVkEOCL0havKAiX9CPH9nqeJ0QVMn0IXnzcP93IPXooPEdGtM33nvn3lpSji0qsQ94i0XM2AkY91J6tqVSbz5CaqUEP9cKtbf5905wb2wplYL3zqdWfDqTGzu/fc/q5PwlL7p6o4kFedZWzP6RQ62kXisR7Yl1wOsI+mlsjRcF0wB0+LDzFd5/sG6xWed4cAOQbnMPejmU+Y7AFyjp+OmDHyt2G9tqc2R5b/DIUkKFnXtMIJLGLY1NC7ToPkh/2AsXhmnbZnvuMT/02LmRwbJcUli34yC+w8oA+ga3ILGS90w8aVOxkhuiT0kFGnnGPUg1OpcK7PY0chr++CljMHYEMxrrVBBKuw26J4CZW7mkAv43Swb57ri+oEbyzPjtdv6VdGzC48/tTs+PJQ3jGNPhGeJZe1tZCRy4aScDdJLWWtD4O1pLGdkPjaLh2BGsckXnsHj97rTcXc4Ovx6oiyBXSl2ulFqqlFqhlPqnevSZh7yHC3AvXEpB9IkaMSBx5Onx/lbJH7unTyd5HKRitbc9syV5uVON3/yKFgk/twMJC/I/T8bX6cllaQcj280DSy5a6fHx4AUgvVaAFNCTak88CImPnQgFJWiedm7RcHHbt8qgN6h/SkaWJgxLNSuRmvG8VmJZJSlnteNy6ikHdOytVlD7Bm5yczvBasZ8N2EWOHduWRy5lCIXCBdoGr9Ucj1++HWL1ax0U0IrMWoxPj/3XUvuS6+3wCYGVbsQCblQ5P7ldj9fOb/+3KDs77DJxTUI0GMDdLSWHY8YM/8UoUHXLOTcphRw8MOZWlFKlQF8DcAVAE4E8Fql1IkD7TcPvgbktiVzS74jo+BHb3wqEAhp/gs5QIH/hvqX+Lz7bV7wXA3GezApmMd/8LjG+/bvLkqPR/rQkgblc+RKmUrjbeVS8sDz+ZeUitIbE0alngXxavLKTXfA+lZMoMjh4Fl+5qnmGNIN7hZ7lF2o9nb1JsfSuErF070SJDc8BYW7l29FAO2O/ZyNGvzWPavZeac3/QqbSfBc8nygBhXRyDM5clejDDRar71cUnhozQ78v58udsYmjVGqvOR7nbiudfG5UZI6XwgCQKcvCGk3E+GoY4tFHjMh+Zm3WHrHOd62k3vjfnpuBOeIjtYyy8USjh+kKbbXkBfnoHc07/zqgXpo5AsBrNBar9JadwP4EYCr69BvJiRhSdZ8aQXlWqa/QpJ2uOegd2NZD91OoddQ4waQ1ATNWmRMO5z5+ZpxSq2kc76VJf33+++raIdj5+3dfRX8950rnfHzcifzj4GhtJKtPfEE/3KeGjh+5nKZOhv9GOOpPWql06dWoNBWhYufxMHHfLwr3j0bzwKXgNDYSQvVJ3/3dHLedHxWsjFpbr6xr8XzLPHbl24yfv1URJkLsrJS6Oztc8ajBYywt7MXj/PkWzp+v7v7KsG5+/n38zhqTv0Q/vaSYwGYexHjyP/irJmYPo6l3PAWo16PA/ev357OHnF+gMnH/ojNayPNr83XyO018ufAjx/u1MoMAOvY5/X2OwdKqXcopRYppRZt3SpoPDVC4siPnzo6aQNcgyRt52ZPGsnoAbeHHz5kM/0JK7CfAMm3QJ86cxxmThgZbX/jOUfbuWmmAZgf+TQDj+ST4GtQgFvyLHdHAGTTG+xjjF+PCnLWJnueaMe6L7vCxZKV2bHJtuEb/Zhm5Wcf5HPPOreSUjhuyhj48MuRUcQrVfzJstnw0WOpDWgmJOS27U93OzFqoieJaHXbeRk103d6XfZ29eL7D6zFt+9d45yb/6zx5Fx0XSSQzcnXZgHu0WOQcvzujqJPeN7/+65VAEx6DDo/fw6tti5q8kyyNp5KNwixt8/N125f6cyPd79s8z7s94tW+LsWP3YDrtulFCneKAyasVNrfZ3WeoHWesHkyZPzD8jvL6A3frLIaCBUlNU3SM4YPwILZk8MLiwlAaLE+vzBSHOVu1tNf+yOlnJaP7ASttMYFR1qAJTsfh9xfmzO4rkjfCjOZmldJepnt58CQMV9nbnIi+fljm+D6YWT6I1gEYkYO+Uycq7mRfP/0zOeQVGlL7l0PAXNSBq5UnKJO18YpO6fKumb86O+IdjlqYEHV2/HWpYJsKI1WkoqySy48JNpLhgpsyIA7LR5XHxqYGyHHEnM8Sm7U6BzyxIyfuQmB3mn+PnITRsZK90HPrXr+IKW74DNsa/6xv1RxWbdjgPYtq9LpD7uWLoVS+yuwlfcwtgIaSlI2ySNvbVFBe6HpZJbAYneuWbJfvgcgFns80z7XUMhaaWEfV3mAvrtbS0lx2sl+d6rRMI59vs+dAnGjWh18jxL2ldHWzlJoCS8N04VIv/Bo1zpN9gdgbRV5PBfnFNnjnMyIUoa1pPPuVtlcrMDsos/xHJ6lxTwiatPAuCm0+UvvVg/suIW+hUNjiCvFXHoQJA/vMbdAgPGi2j1tv1JzhN+XkncQIT22XlAKNCbjK2csWl99w1+FMFIGSz53EtKYW9nLy783O3J70mYCo5ATqATYLRFAPgH4sC95+nVC/jrmII/M37hA9523jGTsIAlYZPetb+52FAf63ceCM6d7i1RF4SUWnEFvZ/DHvBSNUTk7N3LTYQrGS3z/NBjcjRLYzb0j7uDBmQ7goLClDFpDpzbvfoDjeRW6iHIHwZwnFJqjlKqDcBrAPymDv1mQiO+wr3tfxeJ3yfltzwNoFRSjqWea0BTxnQElbcljbejpYQuVnYqJoR72VaQXh4KKBo/oi3pn7cDwPnHTkr+9gVcR0vZcVH0Xyw6x7TdrSAkueG96dyjsXD2xIxq8gpvOOdovPLMGY4bWC61gjRPizQ2tYvGSl+zilxjpYAnrevXFV++O5h7q7CASZ4PAJJ0t0EYt/0/LT6gg63/1LHtGGkXOX5PlwjFH2iXJxaV9gQJabiBex1RL55/f55dw9fIl23e61Er4bn96GGjdPzrr55I6DDCn5YaAfYpzz5AfRDlcr01FNP8+LX/v786m10A7Rzvozfj/PiuK2psjFA3APDw6p2iRt5WLrlJs9j4X3j1aQDcVMuZ49cBAxbkWuteAH8D4A8AngbwE631kwPtt4px890PvR8kOaIj7kSpXy4dX/3YHa0ptSItMl+73RRIXvTszkDL/fvLzHb61Fnj7Pjh/NpZrUP/xeloK+NgT+h+yMG3+jpPI7dj+25s1DdAhh2TkyK03qeCVvTVRtyHnegN47Uiq+R0alJgihlXJXlA/L4BOYWu5PkAhNkLU9rI/P/1O1Ymx/vPRFmpwO4RfWTtPWkRVidfkLzsdKPlX3PWTG9u5v+A1oF7vNQ/v5bb9rlupRV6IBjIpfXJDXtw4+INjjZNXjFbLcXpuw9OGWtoRtq1SNTKURPTeqgxjpyUGxKo/N6dd4xp6+6r5F57qZ3ysre3lgLFCwhL+fFreC4bO9Z/vVEXjlxr/Tut9fFa62O01p+sR5+5YyK8MMdNcXNA+O0+tcKfC35jfM6MsrBljd3RWkqNOwK1QQ/++p0HAoFEQT19vrsU68PJfeFxls5uAFb42h9QQQ0ehUlBO1l1NSkwJh4QlM69iy8ibG5KEMa0Tc9zPxSrwVO/kJH3wtDxUlELrpFPZFVkyCc6t28dtm7Y3ZlGduZM3t8lhX2ngmRshxGAtI33BWFbWYnHx6mHOAdufhAK0Xe/wE3Oxd3u3nL+bABupLMZ3/xPO09KXiVx4ONZfv4YR/4KmzudAnf4FC+Zb8qxdUdq+BJ2HegW2z/wQqNctZVL4o7Gp1b4NYxVGDokjJ31hsTbXWpzKRP8h6+tXEJXb5j9EHBvjP/gTRjZ5jxEWniwdx3owSa7DZe0M/JumDVhZLBVTtwA7R2XNICuyDYOMMLGj/6kY/danvKBVWnVeXIXi7sfpu3xvNnKjt2Cgz2pOxu/L2UVVnQnI3WWRg7AlpHzj0XSJiHvhcnKAlhhff/sXefiDJsXJ0lzYH8X3x6Hizefk+TS6v/O7JKkaFm6JuYzGRMPdLvusnGNPFyELmZ55v3nyS9eIRk7T7fXh8DvCS2ERLkF1E8kMpVfW77oxHZLab6bPnt82ObUHxAufWdPRby3HaxwhSwvlJPGQLPxg6jfjPHrheYV5Ag9Q6598Tznc9zY6QpSgIR8hTo37baNDG88d4Lf9x9thN/+rl5xbi84/oika3+r7FdWlwIweG1PfyEZwWidZH727wdXmeN+/PA653iFeL4TaCTaYSxMnh5aMnQm4cxIfdg37enEjxetC44vZSwiZF/IzrUSgr9wMWFL/aXUStg3YHK4UEV5ykOfG31YyXlRhUWGpzCmXRKXwf7zkLpdmv//608rkmNN3yQoIx4zbOzRHawilWc8f8WZMxyKxxf0QBroROBD0rFErfiCTCnj59/tuU/GA4Ls+XvSijTfLoFa4Vqx7zrKoZT8vnW0pn1LuynR2Ek7oiAPT3z8eqF5Bbmg9SqlkhsAyNRKV2SFbmPualE/b+YX6o9NnBwJ6pB6SfOC+OOT1pcYVZl2uOYzVwbn7mtISgnFcu0PLrDh/wsd90TjKpeVi4V46rx0riPs9eZ5YmJGyGTuKh5VagR9xI+cna+Pg919zu+X/fsVAICTjkyTR1FrVo4ZuiaUGveRJO1CfGzTd2iXmDY2rLLOf3Gw2/NDVu7LHvNDDigST7HwjZ3p8UzL9ewD/mn1VljSKx2eW4u3WHBqhdq+dOvy5Hh/fFKqzPjyInnh8ZNt3If57M+B6EIyOPvUB2AEeVb6g2Wb94r9uxp5uJtqlzhyOjePWskav15oOkH++Prd2LK301648K16xRlpLJKokXPOjLeVS0n0ps8DkxsVT3rlv0wvPMHQOn3kleKNzWsM+g8OVXv5p188DqA6PpYPT5WJJA8KyuNy5lETkt9XNPlyy2lNKcLRBK74gpzmbs+rzY3iqwjXZt2OA87xJZW++JzyobEVIu6HeUQzE7ZtLSW86MSpokGTBI1Lrbj0BAmJpMKPDl9mPi9JGG5iBZ4lnpq72Pm7JIClbBAEIYc/ts+R+4IeCO0DvG8KlKFSbtK5AcCrF8xM/o7RXXZ4M38+x5ZSWmrNtvv2gSNGtaG3oqMcOQlrbqMhUFDUTY9vBBC/fr96dIPo7ksKYSfzcuPjB7lW2HOf7jioPfv+1QNNJ8hf+tV78OIv3pVoMD7aHE3BW8GtZ4qfVhNwHfx9Tu6bd68GkNZBlIxDNz+xEQBw45INonGIagx+8+5VgaCmXCv0YvgaGEWFEnwx/zprjOUaAB3r8++mnaIrzeeosVPQiv1rI1Uz95FEzIJTCOb4797/LHYzv22tjVBQyuxQvnQrq+YOOqdgCOyzlBY/59ayG2nn164UvVZs31QO7C9t3cdsg1mPuLhzSPk8HLdNb5cEIAmT9xdPwEQov/ikqUnfUvZBfm7B8/rkJja2O68jWKHyBMK5feLlJyd/cyomCEgCzZ/PMeWYU/dDd4yOtrLdadkpxDjy3r7geCqc/MOH1ooLCT8taX7kJbZuxwHRq8aP7PTpVl6AOmv8eqGpBPkmq7nupBdH+A1/iP1nr73V9SN3jCPsxvgr9FvOmw2AGW+EvtfYKL0nntstGodIeDy5YU8q6uyPRlmtb7ot6Otr7GQ8cre6ad/H2rzcfcKOISk95QSAwBocQ83UtKdacZxaMZ/9VLLQgG+vo5JddDz1TeipeC8EUo2dtufu2OGd/869awJh7OeU9jU/vrj5PCYlVkoNo3DaAeBY5iWV5w7LhfEFx9pslywykIQtvy6TRqfRwIAryNZsP4A/PJlmXpRohWRsZrPhpdbSdve8/u0qk/Oup4/zy+E5tbeUE/ooZqg08wsXsYoGdnjZB/0xHnl2J7bv78Yy60oq7bABJNeBt/MKVRXvvgNIUiz87vGNosbfbjXyz/1hqbgIt5bDyOFgx1EYO2Ws5EV+IV+YNsYPSl4rxq/UfOYvhuS1QjjHM+xInCFtxdds3y/Ozdk2ett0evCJZvA1dj+3hq9BUc7rW5+mSDI3uhIIhZZSqYFKqquZ5gSJaORRaiVMGBb6sMtudgASWopecqdN0GxIezSJoKidNHL3ZfMr5fg8MUdQ4Ufw/CD+/cHV2wNh6M5bs8VS4ZtvWoCFcyaGaVCVcq4dX7iBuO3B3w1Ixk5qXfyRy4LjfcXjzmUmF9Ln/rA0qg0TiD6K3U8a3/SRYuveruS57Yss0KRV//JREyjuX1+6fjcu3hD0T37gFS1Tla9baHaxB7jGz34w1jEGh/OXsh/6fua+Rl4YOy0qvjASHi4uyP3WxGtFWGGlC59qdu5LLW1VSSg8sGqHODf+kMZW6AetZ4r2jvHT7Pql5p7cYLbgT9gwfC5UaAwy3tH5cVe3oKiBXShaBD/ylNgxHYfVzNMxf/M35wMA3nxuSg0lAT/sxeceN0RL3bk0TKwm0RtJ4iwW6JW64bl5tZPIzkw/ctNGnO9nb37GOZaPTSHiv3jkOdGTifKm9Fa0c89HtJUxfVyHWGeV9xFQfRkLhStk3N/5isWZnusg0VkEugab93SK/LEEX5C3lhXbSdL85WOluAsJ/m9mTxrltrMfUGqETXs6RfsENwhLOz1eMk96X9vKfupoHcqTZgsIGixweVONRi4aO3tlY6drhXaFVZnSXh5ME9n7L9VlJ01z5uY/dLSlPXfupChnNqLVM6zZH9zw0LMAkNTI9DXyJHRb6+R//9wpHDppR1qWKvRaYXUzAz9w8z/RJwFHzjSTo+2LNqLNfSl4SSwA+P4DnEM3Y2/fLxWtsGOzY8mYe+vTW9LngxZgnyO3Pci7FOrbHTOJchRe9h12jn98arNI9VHhjS6eFsK2rdy6D886SbN4q0Fo7EzbxrS7aRGyOHLfMWDetLE4wtI2Zmx3IXivzaOycuv+TLsEh69tlpRKro/vBeajIuxwJcQS0SXt7G/O2UvUCf9tnsYsCfpR7S3G1Zh2Td7xLlVL8xe7rwuaTJC7L550XdoyOPK2chm9FZ1oYj7nFWyFbFeL1hhN+dO/t7kjhL6p/mVyfOSurd91QAyAeN7sCWk+de+lv+Lk6fZ7+aH56+fPAQDMnzY2OZ5aw8yGqfYXM3byBE5RaiUJCHKr9HChIJWho3PnGhwlOZPOzR07PJcPv9TwuVecPC2grFpKchHgJE+04EdOL6tfr1FanP/+RcdnzpsE9bPb9wfCjMqAdSV57o1WyntI3WENeP9UTGPXge4kERnBpbJs2mTW3t6Semgl/TvHh0Iwz+Oi0wtIc2vImv9jPZAXlY//fevznM95iwmfI+WLP23mOFEjP9/aKV44f0qVUbtu+5iOVvRWtEMp8h+0tZSd2Iqwh/qiqQS5T15LLk8utaLENhIsTgAB08h9YUWh94mGocO+/erlsVu2bsdBcYXuaC2n7oOeoD/DCngnbwc7lnYDpPXzHcMUq7VQ0Qs6v0xjp9WQYmXBzNzMZ4laobm1Se5hGkndSgIZeWku/ju9wrrBSdeNvIF+/diGQHsM82FkaOTesT6k1MW8wLF/T4DUC8lkgbRzt22XWndVWmgpoIgP0etvzYW5UT7umEZe0bB0VXoMxVMk8AQpJXE7bdb4qrVJpz+GTbtlaoNwoLvXaOSCJCJhS8hbTKTmxet3B88sYK7R9HEdmDiqLV8jF3YUvt3KWyu9lB/Uf+b0B4SmEuRdve6qL3LkfFspUCsAEywxjdzj0MlrhXJ+V5ewK96Wrs/pj9pbysmC4fOxwby9h8ZP1M+pl5ZyCVPGtCeRinR+WcZODSTUyta9Xfi0l7uaz82vBsPnViqZUHwp3ScX5POmpoUcSB5ebRNDAcCWveSP7WrcQCqU93X1spwYpJErZ0fic+SusdM99miPf9U6fBFJ0LzoxKnBPTFzI/5eBwKRAsh4xs2SUkldV9Omk7EBd/xXnmniJbp6+wJqpM3TyH0DNBn9nUhldjxdg8XrdgUGZB8vsmkxqGyaj+Vb9oqClHD38m2BoZDAF6TqOPTYTk5u72g1qadjC+VLTjEK0res+zFvJnvWA6y8o0utCO6HhbHTwF/1pZub6bXi+Z36K2i3t4JS+yjLR/7KVuHprWgxSx1Hdqm3cK/W0VpK5uULevJp7WLuTJJ2wL1ufA3NT4JvBLls7CRqiITk/9hqLXzuSWSn4LUSs96nc3M18rTSfNr35645Dc5BYAIt8tT6G9jWcsmJUPS9Vlxjpz02qpGH93REWxljO1owY/wI9FV0YPDjRb19eqTV2x2SAX0Wy/r3husfdObNH5gXHG/c55IQcq6UMGOnRmhTaWspQWs3cjRfGxWbscp6klHwkI9e5v4n9XH/yu3oq+Rz5DEhSDYSIIu6kc9h9bb9uHFxupPz23/3uPG1v2/l9qD9vhXG0E2pM7KMnZLHU73RVIJ8/U63cks+teKi3dvq+7lWYn6fLV6kXEWHL62PajQIfuPbW8rJvPzcEuTTyv3cJQ2MhzzzdmP0cykGbnCUgmZ4PhQOfw0iHryThejzww509+EOm5/azM1cd379KB8LF6ZtLaWkks9Iu5DmucL5W+Qw54VpzzZ2xgWabFw3XKhksKPnppelUk2OE11KVZDB04xNc0u/a/d2aXFqRcOT88l14cWb4x4l4djOOcZWVYufLVqfPs9sFpT5kFIr5CmrsfF57dRajJUcFJ+St5jwdj97p8+sFcbODHzuD0udz9KFyQoISiiKXI3c1YC4TylgBJ8kyG/7hxdkzo0gGTu37esKcl9Ta5ocKNXYfb4PMO5idDxf5CSKQSHVbKVCv1Fh6UVP0svxC+vrK+Uc4UEoiQ+7tEjY/+l48t/3i+jGrm2yWNn2MJ2oGVvK8yJ5Nrx2YZq+2F+gCPu7erFy6z7RYEeVhh5duyt4meme8XNTKqR0aN7m2LT/dJcWCsLWEqdW0kWCIKVZ9YXcladOx9zJo5ghUL7or1koVyMiTXnp5r1BABwAvOZ55tr+eNG6KLXCERuffMj9/jnIHz22GHzhFhM9XIugpaAuyq3uP/dFQFAGaDtJkG5+NcZOKX/xfSu3obOn4ngrSDd+T6eJKpUE+WjmEiat/u+3qWyTiiasjYIw9nb2BMKyvdWdt294o/NKs+G5GnmQF8L2TdrUtT9fIj50QWEHICg7RqDdku+Sfv6xk1wferuI8OtHZcXCQCjSHF2uOPY+bNrd5czNTyeaRE+quCDnzwzleKcMetLzdrCnDw+tNrEDvnK6xyZBu3vFNvj8fsyuMXFUG/7wgQvTOfT2iVpxO3uW8wQhuZMSOK2jdfgsAsDoNuteZz/Huuf2DY6/umAOAGDy6HZxt3OaNeADhkfP28GG8QwhYtdgzbb9me15xxN48/suMe8y+bLzGgCA2an5imHBkVvMOcILABCuS3um+2FckJOA2n2wJ9Pl6tSP/hGArFHm8ebfsNVk/mQjMHkXZDQ62BNGmtG8KaWqv42TKsLwufv+1Em+cXYYeeRwzfS2Z1JKhPcNhIskd52M+dOa441AVEph5adeAgB4/nGTk2P5eaeeAf4iI1/n1dv22blHqBU7Nu1WfHdWPjZACZeM10wscRShTxD0LzzBFDd4ycnToudGBYj5QsGLgDy5YY9orOOLlL9w8/S4pJE77odOitewb4D8pFm0bOSat3veWoTjrIC/f9V2cbHgXlT3rtieS1VKmSp9xHogRSDXQSG3f7Yj8uhOv50/9ykl2Dg0lSDv9aJT8jVyuY00LX7h32ATU/VwD4OMuZT9DHNIc2MAssZOAoXqIfLxL7OCvKuHByyRRm5eFjKsBMatoCKMu9UO/amNRs8Xo98u2ZD2DfPi8oLOSdRoxHDkJBTzaB8nupLl7S6XDFfu10r182pnBcZw3G6jQQONnlVr57aBa3+2xEm/C7jP1MdtceldB7tztd47lm4NhB09AweE1MW+Rs4XCv7sdLSURf95olZIa+Zju1HEoRD1FwE+L8Lo9jL2dzNPoMh5c4HM4ef2Adzr51+r2EKRp6mT9w8QN4IvXr/LjOGdxeu8yl/+HChxWtqe/k1+82ld0tDYmTpnFBq5g3deeAz+9pJjk8/ShXEjO6unVtpbQi0l67pLGnkt7X7/XHv0uWCuoRGyXopQY3c5cnKl44aqJGqUOeuTjzYA7O3sTY715+6MLZyXpJHzufn+tomRuUT3pDpqhRBQK31u0AYJyq7eCn5mS7FJAu1+663w7799WvQT9xGkWbXz//hvnwoW54BaQbiToHlJi8zWfeZ+ffg3T2a6wxqNXDs2E05ZudagFKPaW6C1ceuUzo3AjY3+uMk5JNkN5T6y2r72ujPjByHdSQKhoH65dWF91OaU98f41CtOyZzDezIEOb2TW1jxDJ/68tNiFxq5xayJI3Gm5VMB+cJUZ+wMgxdSHrovSh9wxLaCJ9ggEenFuuLkaeGXND4Zr3rChSRMS5pdY5ELBcBmAQwyDCpnV3HkeJPFjgsNrkmTm6HP3wdj++6HQSUV9/dOsjJPYFHOkIM9bkkzf+HiuVyc4z0qjQJjuFD7wQPPUlNwXhNsrhC613kcqr9483H8xTkpfMCDfmzbVFaQwuGxWff0nJ02c7zo456OK+QrFzRy3wOMXG7/+nuLzLllSOH3XHQMbnj72c539DwB+bligPi1JWNiDNyjzO/CX2SycqZL8xvjOTnwOc45wngXvc8qlr6vvlFQrAIiHF9vNJUgB/KDBDKpFc/7Q/YCkF+cD1x6nNNX7MEmtzLpps2cMML57OY/ZguJZ3jzNfKYBwXB92JoYQ8VP55z+uQtwReRHsHwK/kEv+rMmUneC0loOBq5wKFzNzhz3nbeVqP9ux8vdubmX/orTpkuXAV3l0X98xwzQOrRIGnktLW++vQjoy5y3/+rVIAF7odckHtzp0Wq21lk0t+TJtrTK9eUnGxpvOOnjhYzThKM+6FrHCfhx6vj+KBiKnR9pFqihGsvn4/zvChMXkEolr2RR8bGhJwfMe2DF0yJUVtJe2ZPVaQA8PrmpRD9d7KtpZTGVggpQeqNphPk/OUQ/cgdjdxtT+rwkR85a3MEaXJ82v76s12tLybIaaGR2v2HNUbt+PmZ/YfZz37ow3cn276vO+GwAR6in/6G8p1wTpULYF4dyT+Xtpa00rjP14aVVEIOvXr/fdvunftCFrXKj19lvRVuWrIxmTvPMcMhGfXGtBuN7N9vejrKke/vTiMa/WbSai87cWoQ1LOvy7zkn//jMntu7i6LNNGePi0uMiQov37HykyN/BVfuzeg2qhi0z/8dHHynX9uK7fsdz6XByAp7l1pgmf89/XH7zwn+Tsm5EbkCHIq/AGE1yAQ5DmStNYUAG3lkqN18+NvsDn4lzH3y4JaYVjBcpJLF769JYNaKbsRkhJHbaiNcAvf5mnFUY3c/k5qPpHVjwS8hUQo9srHv/ykaUkSf+Mn7vb9qjNtdSHBQ+CpjXvcH0MH0ZXkUcM9JLgWn+QEEfr/4UNrsX1/d+Km519XZzcAL3iFVWbyc8yE3L+s2fgCgo6nlAq0E/KNnQDSKjuC1kgL//xpY6J0Fn/eJEE/Y/wIjGV+9PQTMrI+nhiRESxwABV3oP6FCSBdmDmoOARlMOTNboV6+Zq+9DR3l5OlkeeBSsf58+fURUwjj3nFpPNi1Ark5yD9HB7PdwX5GrP7A7cKkPvcUwzBuh0HoAdBkjedIJ/DAiakG+Nw5F5bEqIveK34frn+8X75qpgxk8aXdgtU1zOZn0MxMGpHyE0xfmRr8r2U8vReGzK8vzsse+WDshvy8V96qjEMcWH5r1eekLR/l1wfhbkTDnb3ia6R2SWxSk6YOodfzSbCAgAwpc8I1D3lwyZ+3zd2AsDx1k1O0vbpHJ/ZtFcUloCb2EmSddv2ddm83u7cLp5vXC7/4iwq7xcagQEkUaN8Pj6kqFP+UXvPC392Y4vERfOmOJ/zXGurQZbGG3MvbMvZCrhGf7ftXS+YG/0tgSs5tfiRA2FaD95MGUmnju1gu9zGSfKmE+QnzxyX/J3rfpjjtcKfTdIKv3f/GpFaUUphyUfT6ioxjXz7/q7o3PyXgX+i/m5cvEE0DnW0pkm1ILy4b7QGv2SRynhmsqqi89fpilOm4z//4jQAKWcqacXEj/dUKnKEGzPY+bRPKy/H5tE2o9tbMHPCiCRBVNIuXHseEZkkzUpy0KRnxf3IAZ6/Jtuz4ocPrRWvqWuzCX/Q1VsxiaE8Qy3ZZGix8eVYGzOG5nk97DnYEwpy9tlPc0tRiQuOnpAbuZmcWx0EeZag5BQVB+1UY+ALgN+/b+zM07il5mnM8BzkbvJoQTctNaP7cnZU9UDTCfK2WoydwgoKMD9y1r7Llha7fenWaJg6F8QxQU55pldv2x+0Balu+ctmB/3N4g2u75ZFe0vJ8Xn2R6ftO/HRvP0VZ8xwfssNkt94vTGqxcpSUTRt4H7I+ksq4fRpx08cCHOKiHlgfNrGo2a4sdIfm+BSHOZ/cv/7qc3lYvKhuBpp0ncSsRp/2/JexMzoyogwpoRkPgfPQ/jzPIVWb9sv0Ajp555KxZk7BQwtenZn1eHj/dHIeUIrM6fwN7Tr64mkwc3jyLfvS90PpXeSB0f1J7KTStkB4b1rbSlF89UkeXacpGGFRp7AMWYKr7RjDBVWUIC7H6bt5M41d/KoaE4P3l9eJNp1LGNgDPzGUv3Hl5wyLfBJBUwIf3dfBSu27As4TwD4o62KntQ3FOZ3oJvc+NKxrzhlOkoq9bX2NW5a/HjAD+Bei98/YYyJv3t8Y+Ah4Sdo8g1zPM2tRCVmJTPjkHZipM0tsdXoKbVB2dHImY95pO+k3zytVWge0VrGuBGt+f73PuXUQoJcR9MiEFZu3R/MjP+2t0+LlBEA6CoWMKB/rnPffNOC3D5+bTOKEiXoo7VcwmUnTsX/e/E8sf1cFhAksTAXM4pIOoXTWaoAqf0s7u7sK4ZeYizevGabMShff8/q3BxB9UDTCXIuoKQLwx9In8dOecdQI581cSSUAq46ZXr0peOLBOXRiIE4shjCrbD54nePbxKLGJAb2JL1u0RqZPlmYwReZn/HQcL9HltjUjJIBpnabJu/YEnuh1QPdClxyez3ib80ozD43Bev353UvkwWCTamnF44vPFEVXBQQBMVeEi8Vtj4YWrk2jVy0vqkY8+eOxGzJ42M+hIvpBz3XlurHezelduq8kMOIiXZ372VSnwByaCUeDm5/mjkea6DQFoOLwvXvWlBUn7ORzlDcfPnID03BzK8jgDX7dg/fvmWffj9E0aB8ss/PrvdvBN3Lt1SBATloVbjhFLKCZ31j24pKfSw/NUBtcKW/D/aHNo+iMagsmvRuWW0SdQJaQ7jRrSKeT9Om2VsB5TPOm+bH8uHkggN+4KMDFwf7fzZ8Z991akArFDyvC+ClKmVuGYi5aRw5xYXOuSX7bdNHdue3EfJ7dKnbfzjf/me85K/Y1rruh0Ho+1Pb9yDxet3i2H2QDyfNf36149tiB47lQXLBENzaqUvHkCWlQfkP645Nfk7bwdaDaRn8ry5Rwi/rF//VJgckI3RH33ZSZnHOwtBxiWQdskAsKezV3xn6o3mFuQ5s5cevvZyScxHDpgAlD6v4nmtIE+L8SNbxfbLbVm2rJvqa2cA8I+Xma2lCZ0ONfZ3X2Q0FvLC4M2k9Y1K8nr7VdfLiUHQ56F9ikYyds61+TZ6BWNnq0dn+dTLRfMmJ25+UuSmy5HbL4VLR8FD/j3fvKeL5Tu3RaVLCms+cyXmTxvDMkoiOC8AOJblB897HiRZt3mPMX4j0j/BNwJTib5L5k9JfPR9v3peJzaQ4+zvvkr4vBCWb95r5xW2j2QaeV0EufC+vsp67dQD0hzvXbE9HV84x3PnTspsz6oBzGGUr/QHL2FBatXQdgNFcwvynCsj3VijkYf5yAGTeXDj7tBVTAKl6fRx7eXz8ImXn4xL5k8R2+llzOpbyuuxymb2+8pty8Xc162JcSX0yKHtIR3ia+TtErXC2hfOmZg80FJAECXXespm6uNTa/c1cu/Upo8bgdHtVGuUxk7byyWVeMwgslMCgB89vNaOE3dS9M/7mU17xepEHNzXOY9eyEslK/VPkMqtjR/ZioPdfcm186nC02aOj47NP/KALB9/ed0Dwe8JlCgNaJxGLqVKrmf/Ha2hEZzDSTYm9Mm9Zvx7x425Pl05n/mnowp5MlA0tSDPN9CE3znUitB+4+INVeUPJpc7HyPbWvDGc46OHkveLFlT37y7M7jppJXdZ0tj+YYdeojJsOfXAwW8UHWP/vBzJ/OX4qHVO9ycIHAfSvLT/u79z6K3ryJq5N3MxZC3d7SWEi8iiQO/e/k2LLP8f9ZOKUuAE7Iq0cTqOnLEXPCokLIk7GiRo9PPemL9oXcd6MH9q7bjKzbPvN//3Mnx3QI/j96+/Ao80tzJlTXWXiukLvxdxkAgzfGLrz6dfcoeS7pG3PbS6vV//NQxSQ0C30GBdubnHTMpdxGvB5pakPfHHSxPkAOy90Twm34qElRcN+um7u3sDeb+l89LU272aR0IFSpX9Z1719j+0zY/50iQF6JcSty//PQAHEvW7xINb3z7mVAJXltsEWm3pdIAmQOfPy0tXJCVUvVjjOvkeMHxk3GajT2QKCtCrMACRywIbPo442ssNZORjnZK0m+oeERsbltthr0sYRpo5Ozv3kolaOfBXoB8bq9hFZLqIcilZ/6MWRNw0bzJ+Orrzhhw/9IUOcedm0slIi8IfvI6N5hNpq/uW7m9MHbGMMpqOf2iVsolMR85h0QfEChH9Ql869QP5G0p/aFHsNzglYoOXjzKCnnGUePt8UzQRgosEEyYvG/0C899z8Feke/jY3X19jmf1+80blg/IZ4aoUbe3VdBJVKkl/h9OhaQ76sfBUq4c9lWLHbcD9O2a86aiSOtEK7GMyQmzP7PZlDcJ1SS32nTrHYnQWhhHxS9mfeiZwXl+AZRl1oJNfKrbCRvVt8dTIj1V5BTKllAPvdSSeF/37owmE9/IJ3DA6uzOfI88PgEP01Hmw3R11qLDgqEanZ7A0VTCnLyOc198HM0cr+Ds+dMxMLZE9OXQhjgTefOxprPXNnvB5uK6/ZGQpIJWb336bBmKAkyaeqhVuy+6L5mEZuAhs7diew80ONoPnSaz24/kPTva+SAn3Uy/cH37jdCcsWWvZmBFb62JCHYiTBKqZoMdXkv4kHBF/pb96wGADywKqzETrn1KQd+Xv9ZHL1fmJwrKb2VSnA7p43rcD6LFa/YNe1viP4JTobDfnVRNaRz4OUh+yNH+XlLGjlg3mUNRF9auvcDSFeTiwF1rZT6nFLqGaXUEqXUL5VS4+s0r7pAzI6Y4X74+HO78dCaHcnnRiyg15yV+jTHcKC7ryb3QQ4K3OFVg/zUBL4fOs9QmLUb6WWumZk+zexvst7T/0GIvp1nZ09f5hZ0+eZ90XSo/BxjMFpTmCu9q4pgo6tONXOPuQEmY2S0EYfPx6eEWUvW76qycEX8B4GgZR8NR56zSAhcdZ6PdjXYuDuNjGykRgrIu4YTpvGFRB7/ebMnBCmmCQ5H7l0jx7U245283i7m9aCnYhjoGnELgJO11qcCWAbgQwOfUvVYY7W8GMQXvlwS85EDRoAC8XDqeiAWwcZx/6rtA3qpAVeb8iu2S3k9/ALH0rWjLSQQCjwqVefPrcWvu+lRCDc8ZLxNfvbn9aLHDOHztyzLpH38l8yHSQcb99bJ6vvkGYZjj+2i3nb+HADA7gNhkNhHX2qyEE6yOVV4/+Tzv/tgjxjN66MWQeBy5FXQNsJ582Li/TVKEtUHNNb9DkhtCRxZhScIP33Xebjng5eIbZzS9J9LHuxWFTU2XKkVrfUftdZEDD4AoH5OoVVgdHtOikvhwrW3ltNirJHjGmll/spty6Ntp7KEYHkj5zEJZWdLaP7uZrmT/Ux7WRw58Zz/9acVUS75b1/IIuA4bWP3k7+zhYx9gbXLCr9nd+wXjZ1UVUkhm2vMy5L31MY9gv98mtAra/H++u3Ga2TFln1CK3D3clMrdOnmMKp2pY16/YWNruX9v/Q0c11bSiW7wLmj3/6PFzmfswp+7+l0+Xn+7Pb2VXIfqLxFoprShRJ4FsVGa+TSQpuX1GwgoIRdX7XvRV73w1aQe3gbgN/HGpVS71BKLVJKLdq6deuABvrCq08D4DrdS8gvPOG2vffiY2zVD3t8A677G22RZwk8wEOa+ytZ8qu8bHRcQyXtnHKOZxV3kIyZpJUc7O7LTFxF4EJkpF1sKfeEb90n2mLWhJGisfPN580GABw1cWRmYEVrhFqh+91XqQQvW1u5BK2JMjLfSdf1dFaFRsLbM9Ix7PcMoPxlpnqT7/vho2KO+TlHuIWNpbkdOV6mBPhPYxr5dMaT5wryfr4MIxyvkcYK8ovnTQ6+qzYysz/41j2r7P+rxbQZH2LvMzDE1IpS6lal1BPCv6vZb/4FQC+AH8T60Vpfp7VeoLVeMHlyeMFrwSvPnIk1n7nSqVovQXpwnMIT3uPd3VtBX0VjlS1e0YgH75IT5EAhwNV6pJFpK+7/VgIvrExbZErMFWTac7K4me94+9ufb/I6v/6co6PUChdYvKm1XMKkUW249MQpbOy0nSqZTxnbLvLvR9s847c9syWTv48ZOz97jSmwO7q9NeTIpdqVwmWdN3V0+CVvz0jH8D62UwEAxabJK83HyrVdJAgnjo9Y6sYHv0S9faGQAYAJLM1rbjHxfgohbrtolBz7+uvPxAuOn+zQiRLq/T7vOZg+81LajNeefZTzeUjT2GqtL9Vanyz8+zUAKKXeAuAqAK/X9QzTqgOkhzMrze3NNoPgTxaZyuqNWEGzrP+nZkTqAamhFMifmzTOUlaf0hG2pXiVHgAYY4tqKNbu00597Nb7Uy+XeKpa6smA0iX89x2rAu4ecO9hVjX2PlZcmoOiRjt7+sIUu4Igl5bQEW0twXccWZGT0z3vEH5dR7NiJbGt+exJo8IvGaaM6RC/54tCT5+cNOt1TNA0SiN35tQgjfwlp0zHd9+2MPd3ecbqWvHRl3mLqHd+Pt03bKkVpdTlAK4F8DKtdbblcQighLNz0+C6oJee0F9eMAtZfY5oKyc7Buln3PhUi7GTQLmVfc+RlnIp4fskeoN47p6+StQoxxPp+3PbsrcLP3o4zXfCj59j87Rccco0QLBN9Dhaq9w/ABzsloXpGhtJ+5Xblgf+8yScupwCx2Efr104K/ySIUs+BDno2d8XHMtDvGVBl3efYwUZHI28Imv7J7HSg43c9hMGYYhMSO6h1eCmv70A1795QfD99HEureWfnn/vh7PXylcBjAFwi1LqMaXUf9dhTnVDvkbutr/O3wo14MI/LaSZ5ZBypUvzkR4Kzqlmaf5BEvySZOxM21uZm1Usgq01w/bA4fty0yJRVrJtYjqr0JLFkce8Ksj97cHVOwKNn3zUf7poXaZbZYeQIpeDrvu1l8s5s49mZeh4/05e8IjXQ563SDVPaG9EI+e5WvKETD2U2aHeruftbmI46chxQZlGIHu3JWHYauRa62O11rO01qfbf++q18TqgVjSLIJ/XV9wXMpHNmr13NuZncecIA3Pv5MWmZedlkbH5QkAfni5pJhGHmrFtCj09OmA45aQndlRrk35+VuWiblW+Hmu2LoPSsn98wIBHOfZwgOtZRXYBvZZT49NezozizeUc67l5DHtWPOZK/Gei+Sc2c8yN1m//0tPmIoTp4+N7nRi50WIpUuO7Wo4+LWNCZmjrF0mVlOzFlQTtNUIvPKMGZgypr3uitlxU8c4n3O9VoZrQNBwBV1Q6cI6gtxrO8rRnBowMQBX5njaEPUjzZ1n4pN2G5ze8BeiF504NYmyq3hGv+37urHdelBIBkVe0d0YdWrTEk+fNR7zWJFj5S0ihLy6mTct2RgVOLEiBgvnmmuy80BP4K3zMZtuoa+iWR3XsP96Umx+Vx2tJXT29kV3On65NB/jbLpkTtMA7jXMSmNLiCku173pLPzlglmOob2/iKVRaDS+8Jen46F/ubTh40jXkBdtbwRVSzgkBfnzrWYtUivlOLXC0ahtEF8sJJw8wwjbmLCktJyScsNTbvraT6Wik4AJX5iSkXdPZ48YEEQP6JduXW6MijVq5BNGtiYLqJ9Lnf+dV9IMqP1l4Pd7055O577S1vhHD6/De294JDr2qPYWvOPCubjh7WfXNLYEqbbmqq37ozudaqrsPPmxF+M7b32e8x1/fvqqCAiKCfL508bis9ecOqAdKj3Thzqka8T9+xtJrWSb45sU//2GM/HczoOiwS+LWgGA02aNx+J1uxpGreQFrlD2wNjwWdGPC1h9QX/+tz2zhfUha2iuG548gduXbq0i66T7eX93X2J0zIpEZyU9on3X+i5wQfjkhj1JJkQgjeR1+o+M/c8vOUH8vhq86MSpSd5z/7r+ZrGpWWkMcdm2hxhGtYevsX+d+lOEpV74xbvPT7I/Hmr4j1edimt/vgRAvpLRCJtb0nfDeh5CjGxrCfgrQnsGtQIAT9nSUI3aBuVtcZ/bFS8bBqTGUGl+Tg6TyJvb21cJhCnVF129bX9m0izACJxaqZWHVu/AXutn7tM6HFnpAQgD1mrY8TzfdtJ/A96IUW3xVKoUMNPVW6krned3lfc8+4FL9URbSympn3qoYSyjiwbDhTOGQ1KQZyFPI0+SGw21r1QOan1o3m4rGu3v6gtC9KmS+c//vD435abJbS2PSbuN7Eo5/dttELJO+5QZ46LV1qXjWwSpnbdI9QdZ+To+aD1dTPpf+fjPvPIUp35mNfD7ylMgpN1JgXxwOlN6Jz94OYvWbqBIOfwEubNVjV/ZwfCrlfCGc4wLZEwzpEILtYToA2ntyX3dvWKFIIC8UrINjpv3dEWFAu12+iK+aibneNzwFjN2fpRFL2YtEje+7wKx2joltQLcO+6ncpXGrgcog5409U67w9q2rzu6iLxm4VF49YJsX/YQPhdf4+EFqkI7z+UiXGQe9DVs3Q+bEXkaOaFaN8H+4DtvfR5+/u5zxTYKSoq91O12K15rSDXxqPu7egM3vGNsybD9Xb1VJcGPNRF9srdT3qY/tGZH4EfOQYUZ/Pa3cEHcj3fh+cenHh38vI6dMtrRmEz/9X/ZiKeXrun37luTzq2Ob6MvU/KEyKyJcs6WAtng8kSK3ThiFEuDUFAr9UOW+yFHNTUg+4uL503BWUdPFNvaMiI7gbRqS54NzDeSUQHj257eEoTov8Umprr5yU0sBD/ed97jGMvUsGHXwaDaOActAJnUSj9ehlNnsKyS3uHvvugY53N/CyhkgTyNpOuygeXrriet41/DvOsW80cvkA2er1xSrs6eOyn5u9DI64hq3Q+HCu05BRIeXG0KX6zbcTDzd35AENXkvHfFtiAcnC9uMY38oX95YfJ3TCgQnXP7Uje7JflCf+OOlUGIPoCk3mas4MdAwTWh/vpTDwSkkUsxNS9iedzr+Tj6XcVO63tvW4g3nxvPyFkgGz3MG0d6dtziHI2bx2EnyNt5WsshnEcMJAzzQqKpukwM/kN1+clpIJIfGMPzoMdC1ceyYKTYdXvjObPF76mogqlNGQqsm5aYXOWUqz1L2Fb6EWFYy8tUz6ruhI6Mxfk/rzkt+buhVdYjfV94/GR87OqTGzbuoY5etnOXBHlLDUrEQHDYCfKsfORAahQcKtD88jK1UZWjGHz3Q1og7lmxLfAc4RGjUtIsPi/TJj+QrzzT5EsngyyhJckJroMQfQBYvsXkn6HCDZKwpfviF1CoBo5GnrN8N1IjlzBuZGtSALqeQ/vPz1AZ7w91nMkqIEk71cG67oefIM/IRw4Ar1t4VPDdYKLNcm4xOU61Bf3Maz78/CA8OKovkg0PkJNmAX5ejsyhA0FP2QOf23VQ1MhffNI093hhbrHqPNWALxx5BkXJJXGg4O6HEhK7SB3H9B+f4UgjHgrIK1BdCPIGoT3Ha+XcYyaFXw4iKDBj+/6w/iAAfPk1ZwDIr47ka+T8gerpq0QFmpQ0K0RtiwB5xQByuta3Mq8U6XgA+PJrTs+YTzbc1MVh53wX1ogXLy86kwR5PY1hvmG1UMgbj1oKntR97EEZZRghr9r6UG9Bf/iwKUbc2SOHNJ919ASs+tRLsHCO7PVC8P3IeS7znQd6EBPGWVV4CLGm2LF56VrneVSMNLWj+5mCFHB3E9Lc32ErIAGN8Vp5dO3OzPbE86GOQ/u1LhpdZq1AY56danH4CfIcjjyr2stgYEQVSZKyXMkosjG/7JX8fVbJM0KM9qHit77BkC8qWSH6BElrHplDT1QLaadx7NTGauR5u6eUWqnf2H5QllSYuEB9MZRK4OEnyJ0aguGFr0fe5YHgnS84Jv9HGXjvxcdizWeuzP2df+5tLFWt1M6xbZ9M+8yfNgbTxnYEQTY8z8augz1VVBsPvxstJIbqD6S+d9oUvkBjtKq5R2Qb0NPUBvUb0y99d9eygRU8L5CPoUzrcVgLcumlHWrNhZffqjf+76/Suoa+MO22Arw/XiGEUe0teOCfX4hz5sbtDH5UqQRJa540uk34ZfUgbUkamd/yRmhVPB+HhLwgsP5giDeWhyUamW88D4e1IJde2nmRrImDhQNdjUtexKumx4TpDx5cm9neX5zFUuxKOGI0n1vY3p5Tbi0Pl1vPGOm8uB99I7w78oK8GmHs7I+/fYGBYd3OoStbfPgJ8nK2IB/V3oKFcybin18yP2gbDOQVnhgIsgy9tDtZvG4XANlN7wOXHtfvsd//wvRYSWBt25fSGzF59uN3nIObP/D8fo1/0+Mbo31PHStXoq8X8haHrILb/cVQ7ywPR8R2c68/+yiMH9nY6kiHZpLgDOQJcgD4yTvlhFaDgUaWw2rPsA+MHdGKHYwrloRtXv3ILDy4envyd77Akn9wdgZlUy2Goz91Sq3UUSOvR7XkAjXB9xQjfPIVp+CTrziloWMfdhp5XiX64YKzc9wL+4OszI++t4x0aZas393vsS+aNyX5O++6N/K2DLUxW0J7AwKCCkE++GhELvtqcdgJco7hKsif/vjl+H4d6kP64MEJ/qn/5F3uLkTSDncf7H9q39nMD1wyMl80b3Lm2APFh68yOc0PdDeuEk4WRre34GJ2jhxZBbf7Cz975zdef2b9Oi/g4DwbRKiDeNrBw+EtyIfhNhswId2NiAibxHIj+37mM8aPcCp+S9TKjPH9z1nNhbckyE8+MjU4NuK+jGo3O46DkUCrRuOJj70Y33nrQrGtEX7kfr6bK3J82Qv0Hy877UgAbgTzYOOwFuSNyKsxnKGUSoRxa07Fb0mkvNQ+sP0Bz/2SVxS7EbeFfNkPRjTyH73jHPzoHefUf+AqQIvm/z3wbN36PP/YI/DAh16Y/8MCA8ZfPm8WHvjQC3HqzPFDNofDztjJcZjJcQDpOZdzTl7OG9F/jdHRyIV+2nPcQgeKVCOX3TuzfN8bjgZtDKeN68D/e/E8rNza/4RjBfKhlBLLBg4mDmtBfrhp5EAaXp+Xd1tiNwYiYPnCIFEr7TmBWgNFqpEPv0gZSnD2qjNn1r1vqYZpgUMPh58kYzgM5TjW7zSVhSRhedTE1Ie93rmV25x0n+GF38hKnjUiwdOotuGrs2y3bp9DmXSpQHPjMBRlKQ5HjZwg8dRrd6SRaZJMGZBGXmL8vLAboBJ2Ax0nhpHt8Ur2Q41HnjXZEW95evMQz6RAs+LwlWQ4vHM052l/klY80IWPBLTEz3Ph3giNnPzkh+MtpzS+19rMlQUK1IrDWpAPxyi/wYIkxycy90Tpygx04aPjJX5+0qj25O9GaOQkyIfSsyAGyvUyf3pRyb5A/3BYC/ICLv7tqhOSv6VFbqAL35rthrqRqJV3viAt7tAIQT5hVBt+/u5zB1RpqFF42/lzcMvfXTigFAgFDm8UgvwwwyvPmBFt49RJI2mnR57dFXx3GtOUG1XN5qyjJ2JUnfKa1xOlksJxQ5x1s0BzY/g91QUaCgr6kbLj8cRWMWH6lvNmO94t/cGyzXuD75olB06BAsMRh6VGPn2InfeHErdaz4jbl4YVY06ZkYbJxwT5R192Et52wZwBzSEvxWohyAsUqA11EeRKqX9QSmml1BH16K/R+P37n49b//7CoZ7GkIB42Klj2oO2Y6ek23vVgCWeePDPvDI7pWchyAsUqA0Dfl2VUrMAXAZg7cCnMzgYP7LNEVqHE8ig+QIhE98elt2wETz1h644AWs+c2UuHzxck5kVKDBcUQ+O/IsArgXw6zr0VaDBOOvoiXj4Xy7FZEEjd/KVD+akPBzGcVoFCvQLA3pllFJXA3hOa724it++Qym1SCm1aOvWoqL3UEIS4oBrO2iU50g1KDTyAgVqQ65GrpS6FcA0oelfAPwzDK2SC631dQCuA4AFCxYU5UuGIeayfMpDKUsLjrxAgdqQK8i11pdK3yulTgEwB8BiGygyE8AjSqmFWutNdZ1lgUHHUGjkiz98GTbuOXhYR9wWKNAf9Jsj11o/DiApxKiUWgNggdZ6Wx3mVWCIMRRK8biRrRjX4GrjBQociijMSgUcUPj8UHLkBQoUqA11i+zUWs+uV18Fhg6/fM/5eGj1DjEfeYECBYYnihD9Ag5OnjEOJ7MIzwIFCgx/FNRKgQIFCjQ5CkFeoECBAk2OQpAXKFCgQJOjEOQFChQo0OQoBHmBAgUKNDkKQV6gQIECTY5CkBcoUKBAk6MQ5AUKFCjQ5FBaD34iQqXUVgDP9vPwIwAcKvlcinMZfjhUzgMozmW4YiDncrTWOqgKMySCfCBQSi3SWi8Y6nnUA8W5DD8cKucBFOcyXNGIcymolQIFChRochSCvECBAgWaHM0oyK8b6gnUEcW5DD8cKucBFOcyXFH3c2k6jrxAgQIFCrhoRo28QIECBQowFIK8QIECBZocTSXIlVKXK6WWKqVWKKX+aajnMxAopdYopR5XSj2mlFo01POpFkqpbyultiilnmDfTVRK3aKUWm7/nzCUc6wWkXP5qFLqOXtfHlNKvWQo51gtlFKzlFK3K6WeUko9qZR6v/2+qe5Nxnk03X1RSnUopR5SSi225/Ix+/0cpdSDVo79WCnVNuCxmoUjV0qVASwD8CIA6wE8DOC1WuunhnRi/USzFqtWSl0IYB+A72mtT7bf/QeAHVrrz9gFdoLW+oNDOc9qEDmXjwLYp7X+z6GcW61QSk0HMF1r/YhSagyAPwN4OYC3oInuTcZ5vBpNdl+UUgrAKK31PqVUK4B7ALwfwN8D+IXW+kdKqf8GsFhr/Y2BjNVMGvlCACu01qu01t0AfgTg6iGe02EHrfVdAHZ4X18N4Lv27+/CvHjDHpFzaUporTdqrR+xf+8F8DSAGWiye5NxHk0HbbDPfmy1/zSASwD8zH5fl3vSTIJ8BoB17PN6NOkNttAA/qiU+rNS6h1DPZkBYqrWeqP9exOAqUM5mTrgb5RSSyz1MqypCAlKqdkAzgDwIJr43njnATThfVFKlZVSjwHYAuAWACsB7NJa99qf1EWONZMgP9Rwgdb6TABXAHiv3eY3PbTh6pqDr5PxDQDHADgdwEYAnx/S2dQIpdRoAD8H8AGt9R7e1kz3RjiPprwvWus+rfXpAGbCsArzGzFOMwny5wDMYp9n2u+aElrr5+z/WwD8EuYmNys2W26TOM4tQzyffkNrvdm+fBUA30QT3RfLw/4cwA+01r+wXzfdvZHOo5nvCwBorXcBuB3AuQDGK6VabFNd5FgzCfKHARxnLb5tAF4D4DdDPKd+QSk1yhpyoJQaBeAyAE9kHzWs8RsAb7Z/vxnAr4dwLgMCCT2LV6BJ7os1rF0P4Gmt9RdYU1Pdm9h5NON9UUpNVkqNt3+PgHHUeBpGoF9jf1aXe9I0XisAYF2OvgSgDODbWutPDu2M+gel1FwYLRwAWgDc0CznopT6IYCLYFJxbgbwEQC/AvATAEfBpCd+tdZ62BsRI+dyEcz2XQNYA+CdjGMetlBKXQDgbgCPA6jYr/8Zhl9umnuTcR6vRZPdF6XUqTDGzDKM0vwTrfXH7fv/IwATATwK4A1a664BjdVMgrxAgQIFCoRoJmqlQIECBQoIKAR5gQIFCjQ5CkFeoECBAk2OQpAXKFCgQJOjEOQFChQo0OQoBHmBAhZKqfFKqfcM9TwKFKgVhSAvUCDFeACFIC/QdCgEeYECKT4D4Bib7/pzQz2ZAgWqRREQVKCAhc2291vKTV6gQLOg0MgLFChQoMlRCPICBQoUaHIUgrxAgRR7AYwZ6kkUKFArCkFeoICF1no7gHuVUk8Uxs4CzYTC2FmgQIECTY5CIy9QoECBJkchyAsUKFCgyVEI8gIFChRochSCvECBAgWaHIUgL1CgQIEmRyHICxQoUKDJUQjyAgUKFGhy/H9rN1J20EBCpgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(\"t\", \"p\")\n", "pl.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How to write data to csv" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "t = pl.linspace(0, 2 * pl.pi, 200)\n", "p = pl.sin(2 * pl.pi * t)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABSM0lEQVR4nO29e5Rj11ng+/v0Lqnequqq6ne73X47tuOOSUiATOIkzoKJw0yGSWZgDAPXa+4FhscaIAxrYC4Mc4G5d8K9LJjBEwLOhcmDMBl8wcTk4WAgduJ2Ysdu2/1wtbu7qqvrIamq9ChJJWnfP845KnV1PSSd15br/Nbq1SXpSLVVZ+/9vb8tSikCAgICAvYuIb8HEBAQEBDgL4EgCAgICNjjBIIgICAgYI8TCIKAgICAPU4gCAICAgL2OBG/B9ANY2Nj6ujRo34PIyAgIKCneO6555aUUuObn+9JQXD06FFOnTrl9zACAgICegoRubjV84FrKCAgIGCPEwiCgICAgD1OIAgCAgIC9jiBIAgICAjY4wSCICAgIGCP44ggEJFPiMiCiLy0zesiIv+PiJwXkW+LyJtbXntIRM6Z/x5yYjwBAQEBAe3jlEXwR8ADO7z+fuCE+e9h4L8AiMgo8CvAdwD3Ab8iIiMOjSkgICAgoA0cEQRKqaeA7A6XPAh8Uhk8AwyLyBTwPuCLSqmsUioHfJGdBYqnzC6v8dgLV+jlVt358jqZQsXvYXTN115bYqW07vcwuqZSq/PZZy+zWu7d77Beb/D6UtHvYXTN+YUC04sFv4dhiy+/Ms+rV1dd+3yvCsoOAJdbHs+Yz233/HWIyMMY1gSHDx92Z5QtXFle4wf+69PMLq+hlOLBu7cclrZUanV+7NFT/P35JfrjEf72F97FUF/U72F1xFfPLPDDf/gso6kYv/bgHXzvm6b8HlJH1BuKn/3MC/zli3M8eWaB3/vnb0ZE/B5WR/z+37zG73zlPIVKjUd+6F7ee/uk30PqiEKlxg/8/tMsl6r84FuP8MvfdxuRcG+FRv/nt2b56c88z/hAnC/81HeR7o87/jt65i+ilHpEKXVSKXVyfPy6CmlHaTQUD33iG6yurXPr1CD/7n++xPxq2dXf6TRfeWWBvz23xAfvPsBqucafnrq8+5s0QinF//XXZzkw3MeB4T5+5rPPU6jU/B5WR/zfXzrLX744x31HR/mrl67y+W/N+j2kjihUanzsS2e5bWqQA8N9PPLUtN9D6phHv/Y62WKVB+6Y5JNPX+SJ0/N+D6kjvj2zzM997gXuOjjEyto6P/+5b7viofBKEMwCh1oeHzSf2+55X3lxdoVzCwV++R/exu/98zdTrjX4L199ze9hdcT/+NYs4wNxfutDb+K+o6P80ddep97oHRfXE6fneXF2hZ++/wT/7vtuo1pr8OSrC34Pq22UUnzm1GXefcs+PvXwW3nz4WF+6wtnesrN+Nenr1Jeb/DzD9zMv3zHMU5dzPH85WW/h9U2+fI6jzw1zbtv2cfvfOTNpFMx/uqlOb+H1RF/9twMkVCIT/7L7+CjD9zCV84suHIPvBIEjwH/wsweeiuwopSaA54A3isiI2aQ+L3mc77yN2cXEYF33bKPY2Mp3npDmr8/v+T3sNomV6zy1TMLfPDu/UTCIX7k7UeZya3xpVd6Rxv6zLOXODjSx/ffc4B7j4ww1h/jC6ev+j2stjk7X2B+tcJ7bpsgHBI+dO8hrq6Wme4hX/vnvzXLwZE+7j0ywg+cPEh/PMIf/v0Fv4fVNo+/OMfK2jo/+e4ThEPCe2+f5CuvLlBer/s9tLZ56twSb71hlKFklB95+1H+4iffwT2Hnc+ncSp99FPA08DNIjIjIj8qIv9KRP6VecnjwDRwHvhvwP8GoJTKAr8GPGv++1XzOV/56pkF3nRgqOmLe9sNac4tFFjM90bQ9S++fYX1uuL77zkIwHtum2CoL9ozGnWjofjmpWXeceMYkXCIcEh4z22TPNlDi/ips4sAfPdNhhvzbcfTADz9Wsa3MXXCQr7M359f4vvvOYCIMJCI8sAdkzx1drFnrJpTr+cYSUa56+AQAO+/Y5JStd68N7pzOVviwlKxOYdEhNv3D7nyu5zKGvqIUmpKKRVVSh1USv2BUuq/KqX+q/m6Ukr9uFLquFLqTqXUqZb3fkIpdaP57w+dGI8dlktVnr+8zPfctBGHsBbxM9O9sYj/7vwSR9JJbts/CEAkHOKuQ8M9Y9a/tlhgZW2de49saD4PmIv4b8/1hmX2N2cXObGvn/3DfQAcTSeZHEz0jCD4+/NLNBS8/46NAP09h4fJlda5lC35OLL2ee5SjnuPjDQD9G87nmaoL8oXXuoNy/Kpc4bA+q4T7sZEoYeCxV7xd+YC+J6bN/74d+wfpD8e4ekeEQSnr6xy54FrNYe7Dw5xdj5Pqap/wPW5izmAawTB225IEwuHOHXRd4NxV9aqdb7xerapyYGhzX3n8TTPTGd6QqN+aXaVeCTETRP9zefuPjQM0BMKRbZYZXqxyJtb5lA0HOI7j6f55qWcjyNrn6fOLnJguI/j4ynXf1cgCDbx7IUsqViYuw4ON5+LhEO85egIz/SANrdcqjKTW+OOTYLgrkPDNJSxwHXn1MUco6kYx8Y2FkAsEuLGff28Mpf3cWTt8a3LOaq1Bu+4ceya5996PE2mWOXsvP457aevrHDL1OA1qZY3TwyQiIZ6QhB8y9zs793kT791apCL2RJFzTPQlFI8M53l7TemPUk5DgTBJs7M57lpcuC6XOO33pBmeqnIkubFWaevGBv97aZbyOJNpmB7oQcW8Tcv5njz4ZHrFsAtUwO8Oqe/IDt71RBWm+/B224wXIzPvq63VaOU4vSVVe7YNP5IOMSdB4Z6QhA8dzFHJCTNeW9x69QgSsGrV/VWKK6ulllZW79OoXOLQBBs4tx8gZv2DVz3/K1TxqI4v6C3Nnf6ygrAdUGl8YE4B4b7eH5m2YdRtU+2WGV6qcjJo9dnRtw2NchCvqJ9pfTZhQJDfVHGB64t/Dk40kcqFtZ+Dl3OrpEv17YMTN51cJjTV1ap1ho+jKx9nruY4/b9g/TFwtc8f8uksbZf0VyhOGdajSe22IvcIBAELSwVKmSKVU60+EUtju8zntN9Eb80u8r+oQSjqdh1r919eFh7i8Aqo98c4wC4ZXLQvEZvbe7cfJ6bJvqvs2hEhOP7+rWfQ5YycceBweteu/vwMNVaw9V2B3ZRSvHy3Cp3Hrx+Dh0c6WMgEdFeEJydN+b4TVvsRW4QCIIWrD/+zZPXS+H9QwmSPaDNnb6ywu3bmJN3HhhiJrfGypq+fW+mF408+xu2CJDdOqW/NqeU4ux8gRMTW2tyN473giBYJRwSbtriO9xhWgmvahyryRSr5Ms1jo9fv4mKCLdODvaAMlEgnYq50k5iKwJB0IJljm21AESE4+P9vKZx86pipcb0UvE637SFFXzVuYHYhaUifdEwEwOJ615L98cZH4hrHTBezFdYWVvnpn1ba3LH9/VzdbVMXuMmdC9dWeHEvn4S0fB1rx0c6SMSEi5k9J5DwDXJBq3casaaGhpX2p9dyG/pmXCLQBC0cHY+z2Aiwr6BraXwjZqb9ReWiihlZHdsRVMQaLyIpxcLHBtLEQptnSlx69Sg1hbBmaZJv/U9sLTU1xb1vQfn5gtbWsVgBIwPjya1ViasTqM3jG29kd46NUixWudyTs96CKUU5+cLnsUHIBAE13B2Ps/NkwPbpmvduK+fuZWyts3PrEKfw+nklq8fHk0iAq8v6bkAwBBmx3bIm75lcoDzCwVt+yZZqaE3bbOR3qh5rKlaazC3ssaR9Pb34OhYitcz+s6h6aUi0bBwYKRvy9ete6NrGu/V1TL5Ss2z+AAEgqDJbr5d2NDmdO1tftFcnNst4kQ0zNRgQluLoFprcDm3xg3bmPQAR9JJqvWGtt1gz83nGU3FGNvGt3sknSQSEm0FwezyGg1lKA3bcSSd5GKmqG1h3IXFIkfSKcLbWJVHzO92WdMKaUtA7bQXOU0gCEwyxSora+vcuEWAyUJ3be5Stkg6FaM/vv0xE4Y2p6cguJQtUW+oLQPFFodG9F7E5xcKzXmyFdFwiKNjKW3n0EVzbhzZxqoEw8VYqtZZ0LT31oWl4o7KxGgqRioW1rZVxjnTvXhih3nkNIEgMJnJrQG7a0I6a3MXM6Vt3UIWR8dS2vp3N4J82y8A6/7ouohncms7ziEwMod0TTqwBOxO3+GoaXFe0HAe1RuKi5nSju5FEeHQaJIZTWMEM7k1BuKRLVPA3SIQBCbWpDg4urVfEQxt7vBosumC0Y2LmdKum9DRdJJcaV3L4x8vLBmb43bZHgD7h/sQgcum4NaJSq3OfL7MwW180xZHx1LM5EpaxjkuZkokoqFtEyZg4/5c1NCynM2tUa03drQIAA6NJjVWJkocGOnz9DS7QBCYWBbBgeGdF/GBkT5ml/XbhJpBvl0Fgb6ZQ9OLRcb6YzseqRmLhJgaTDCj4SKeWy6jFBwc2fkeHBjpY72utGxrfilbMpMKtt+E9g/3EQuHuKBh0sF0U5nY2a1yaCTJ5eyalnGOmdzarsqE0wSCwGQmV2I4GWUgsfO5vvuH9BQEzSDfDtkeYGijoKcguJgp7ZitYqGrNteuMnHQfH12Wb/vYAmCnQiHhEOjfVq6GC1r/ejYzt/h8Ggfa+t1lgpVL4bVNkopZnNruyoTThMIApOZ3NquCxgMbW4xX9HugJR2gnywkUKqo393bmWt2b9/Jw6NJrXMAbc29t20Oes7zmjm3lJKmYJgd2F8TNOkgyvLa8QiIcZSO1fkWrE03ebR6lqNfKXWmxaBiDwgImdE5LyIfHSL1z8mIs+b/86KyHLLa/WW1x5zYjzd0K45ZgmLqyt6pS9aGvJurqFENMy+gbiWm9CVlTL7h6+vKN7M4dEk86v6CeOZ3BrhkDA1tPN3sPLbryzrNYeWClVK1TqHd4iTWRwcSWppGV9ZKTM1lNi2INFC1+yzGVOZaEcpdZLt8wzbRETCwO8C7wFmgGdF5DGl1MvWNUqpn2m5/ieBe1o+Yk0pdbfdcdhBKcVMrnTNqWTbsb9p1q813Sw6YAX5Nne83IqpoT7tBFmmWKVaa7B/qB2LYEOj3ilV02tmcmtMDiaua2G+mf54hKG+qHauoUtZy6rcfV5PDSXIl2sUKrUd05W95sry2q6CGDbiONoJAlNB60XX0H3AeaXUtFKqCnwaeHCH6z8CfMqB3+sYmWKV8nqjLYvAumZWM416Jlfi4MjOQT6L/cMJrqzoNf4rpnbZziK2fNi6mfVWtkc7HBju024OXc4a4znUhkUwad6nOc2sgrnl9tyLfbEw4wNx7WJNs01B0HuuoQPA5ZbHM+Zz1yEiR4BjwFdank6IyCkReUZEPrjdLxGRh83rTi0uOnv49GwHUnhyKIEI2pnFV1crbW2iAJODhkWgU8aE5SZpK0Zg3ifdModmO8j20DH7bM60EqfasMqs+zSnkWVZqzeYz1fasirBUCh0EwQzuTWSsTDDyZ2TVpzG62Dxh4HPKaVanbtHlFIngX8G/LaIHN/qjUqpR5RSJ5VSJ8fHnT3MeaYDKRwNh5gYSGi3iK+uGG6Jdtg/nKBUrbO6pk/PJMsiaEcQjA/EiUVCzGh0D6q1BldXy22b9JZFoJMwnl8tM5CIkGrD1WMpHXMaWZYL+Qr1hmKqjTgTGHNNJ0EGlmXvbQ0BOCMIZoFDLY8Pms9txYfZ5BZSSs2a/08DX+Xa+IEnWMVkbZv1I3qZ9bV6g8V8BxaBtYhX9fkOcytrJKIhRtrQhESEicE48xot4qsrZRpqIzV0Nw4M91HUTBjPdaBMTAwalrFOAW9LKLWjTABMDsa1s4xnl71PHQVnBMGzwAkROSYiMYzN/rrsHxG5BRgBnm55bkRE4ubPY8DbgZc3v9dtZnJrDCYiDO5SQ2BxYLhPKx/7YqFCQ8FkmyaxZfrPabSIryyX2T/UviY0MZDgqkaN57pRJmAjS0QHrq5WmkrCbkTDIcb741olHTTdi22ug4nBBJVaQ6uDmtpNY3ca24JAKVUDfgJ4AngF+KxS6rSI/KqIfKDl0g8Dn1bXit9bgVMi8gLwJPAbrdlGXjG/Wm7LL2qxf7iPueWyNgdbWObt5FB7pxltmPUaLeI2awgsJoYSzK/qU5lrCaV2v4O12HWyLDtxL4Ixj3RSiJoJB226hiyhp4tCUarWWFlbb3v8TuJI3pdS6nHg8U3P/fKmx/9+i/d9DbjTiTHYYT5fYd9g+0fCHRjpo1pvsFioMNHBwnELy0UyOdjeJrRvIE5I9PLvzi2X+a4TY21fPzmY4CuvLKCU8tyfuhWWUNqpR08rlsC4okmco1P3IhiW5XmNmufNrZQZiLdv2VtC7+pKuXketp8smHOoE2HsFEFlMbCwWu5oQ59qmUA6sGERtPcdIuEQE4MJbfy76/UG8/lyRxbB5GCCtfU6q2U9fOzzq8Ym1E6gFSCdihENC/Oa9Buy3IsTnQiC4QRzy/oEvK8sr3WkTVtrXpezLaxx+KFc7nlB0GgoFvIVJjqwCCzrQZd+7POrZWKR9gKtFpNDCa5qEiyeXzWatbVTVWxhbVgLmizihXy5I6syFBLG++PabEJXm6mjnbmGitU6eU1O7OvYvdgUBJqs43xnVqWT7HlBkClWqTdUR1LYunYhr8cinlspMzmY6MhFsn+oT5tgcSf56xZNs16TjXR+tXM34fhgQpsOpJYg6Mgy1izpYG65s1hfLBIinYppM4cspWZfYBF4j6WR7Rto/4+fTsUQ0UeTuLpSbtstZDE5lGBOk9Q5yzfamTA2tCZd3HPzHboXASYGNLIIVjsXxpYFp0PAuFprkClWO7Lswdh0dUlDnl8tk4iGGEx437JjzwsCS6vvZAJFwiHSqTiLmlgEV1fLHZn0YJj1a+t1LVLnrHvQTp8kC538u0opFlY7SzgAw8Woi3vx6ko37kV9GjBmipZbpUOFaDCujUVgWZV+JD/seUEw34U2alwfb2qyfqKU4upqueNMA8v81ME1sZCvEA1LR5tQImqU4euwiJdL61TrDSY63IQmBhIsl9ap1PzvomrNoU42obF+4yhFLeaQuRY7USbAsIx1UCbAtCo7nENOEQiC1c61UTACOvMaWAS50jrVWqNj15AVkNJBI13MVxjvj3esCU0OJri64v/455tWZafC2LwHGigUVpypE+IRQxjrIAgWuwy0TgwmWCoYnW/9ZqHDNHYnCQTBaoWx/hjRXVoHb2bfQEKLBdxNkA82BJ8Oi3ghX+lYEIPxnXUI2G9YlZ37p0EPYTy/Wu4oddRi30BcmzkEXVgEGiV+dJrG7iR7XhAsrJY79iuCseiXChXfDyBfLHSnCWklCFbLjHdxDwyLwP8F3G3+d9Mq08A1sZivdJW2OD4Qb85BP7E28rH+Di2CIT1iTYVKjWK13rEy4RR7XhDM58td/fHHBxM0FGR8XgSLXWpCA/EI8UhIi0W8VOjOJJ4YNDahWt1fs77bezChiUVQrNQoVetdWWXj/XEttOnFfIXRVIxYpLMtbaO62N970E32opMEgqCL/G/Qx8e+ZG7knWpCImJocz6Pv1Y30v7GOxw/GMJYKcgW/T2AfH61zHAySiIa7uh9o8kYkZD4vpFac6ire2DOIb/TkBfMOFOnWMJvyWeFqCkIAovAe2r1hqmNduMa0sOkXMxXSMbCbbc2aGV8wH9tbqlQRanuFsC4lbWiwSLuJtsjFDKEsd/1KJYyMNala6i83qDgc3Vxt4HWkWSMkPgvCLqppXGSPS0ImptQFwtAF4tgMV/p2Bqw0CHQt5Ht0fkCsL63399hvosaAot9A/7XEjRdW13MI+u++X0PlrpMOAiHhNFU3HdB4GefIdjzgqA73y5sbEJ+Zw4tFbpbAIAWrqFuisksNsx6f11Di11uQmBkDvkdLG66FwdiHb9Xh6QDpZStezDWH9NgHRiWfX8Xlr0T7GlBsNilfx02+pT4XUuw2KVvFGC8P9GsQ/CLhaZF0L0w9lObU0qxVLBnlelgEYQE0qnuhbGf38Eq6Os20GpkPvmrTNiZQ06wpwXBkg2TGEwfuwYWQTeaHGwsYqs83w+sv183iyAVj9AXDTfvox8UKjUqtUazyrZTxgfiZItV1n3MfFosVBlNxQmHOm9tMK6Be27RhmUPxnfwcw4BZApV0l3OISdwRBCIyAMickZEzovIR7d4/YdFZFFEnjf//VjLaw+JyDnz30NOjKddLJdCtxvpWH/c1020WmuQK60z3t+9JgR+L+IyI8lox2l/FmMDMV8tguYc6lKZsN7nZ+aTEWfqbg0MJ6NEw+JrwH6hw0OBNjM2YMQI/Mx86nmLQETCwO8C7wduAz4iIrdtcelnlFJ3m/8+br53FPgV4DuA+4BfEZERu2Nql0zB8MslY9355dL9MTI+mpSWELJrEfhp1SysVmzlTo/3+1vQZNWRpLsWBMa981OYLdqIM4kY5yr4rUyADUHQH6NSa/h6rkLPCwKMDfy8UmpaKVUFPg082OZ73wd8USmVVUrlgC8CDzgwprZYKlRsmWNj/XFfC8qW8oYQsuPaAn/TL+1sQmDcA+vv4AcbdRzdW5WArwpFtxk3Fn4nHXTbcM6iGWvy6TvUG4pssdr1HHICJwTBAeByy+MZ87nN/GMR+baIfE5EDnX4XkTkYRE5JSKnFhcXHRi2YdbbkcLp/hjFap21qj/dIy1NyE62BPjrGsoU7C0Ay6z3CyvI2K0wTvsc8FZKGcLYxjrwWxBkilXikVDXGTd+Z5/lSlUaqnv3ohN4FSz+/4CjSqk3YWj9j3b6AUqpR5RSJ5VSJ8fHxx0ZlF1zzO+slWYhUJffweoe6WdRWaZQ6dqtAsZ3z5aqvrWZsLTIkVR3wsyySP2yCPKVGtVaw7ZF4GfWkLWOu+3j7/c6Xmq6F3vbIpgFDrU8Pmg+10QplVFKWX/ljwP3tvteN7FrEfjt37U0GDuLOJ3yL86xVq1TrNZtLYDxgbjRZqLkz3fIFCuMJKMdd6+1GIhHiEVCPatMgJF2mitVafjUgNFuxo3fhYkZmwkHTuCEIHgWOCEix0QkBnwYeKz1AhGZann4AeAV8+cngPeKyIgZJH6v+ZzrGH657rMlYCPv2q+NdDFfYSAR6bjHTSvpVJyMTxkrzWB3F/nrFuM+u7eW8vaUCRFhLBXzzS3RbcO8VkZTMeoNxWrZn9PuMsUK6S4tMjDG72ebiW77hTmJ7TI2pVRNRH4CYwMPA59QSp0WkV8FTimlHgP+tYh8AKgBWeCHzfdmReTXMIQJwK8qpbJ2x9QOTvjlxnzOw7dTTGYxmopxfrHg0Ig6wxKgTmhzfm2kdhMOwJhHfs0hO9X1Fk33VrHKcNJ790amUOWWycGu3+93m4kNq8w/15Aj9cxKqceBxzc998stP/8i8IvbvPcTwCecGEcnOCGFLS2klzeh0f4Y2df9tQhGbWhzfmd8LBUq3HFgyNZnpFMx3zK3rL+bXY0ajA35uDPhu7ZRSpEp2i/GMtpM+LUOqkTDwlBf+0e1Os2erSze8Mt1P4ESUaM3iF+aRLZY7aotQCvpVIxcqerLATt2i7HA/zbCGZtxJjAyh/xyL2aKVUJidOHsFksQZH2wagpmsNuOexH8PWBnKV8hneo+2O0Ee1YQbDTasjeBxnwsKnNCExpNxVAKln0ItjrhGrLaTPgRIyiv18lXarbcKmDVo1R9qWzNFKuGj7yL9hIWzViZD7EmJ+YQWPUo/lmVfmYMwR4WBE2/nF2Nut8f32K9ociVqrZMemjV5vxYxBX6ot1XdluMpmK+ZA010/5s3oOx/hjVeoPVsveVrdlC1ZZrDmAkFW1+ltdY7kU7KchgzKGcb5ln9q1Ku+xZQbBUqBILhxjss7cJ+ZV+mSsZZynYXcS+anMOWDRgaIP+CDJn0v42agm8VygyxYrtORSPhBmIR3yZQ5Z70QmFqFStU173vjh0ycaZIk6xZwVBxjTH7Prl/KpstTY+JzSh1s/zkiWbxWQWI0l/BIFz7kX/Mp8MYWz/Hoz2uDD2ax0Ybcz9bS8Be1kQOKSNjpluCa+DrRmHNKHW1D+vyRSqjNkcPxh/Az83Idv3oFmP4oNFULDvXgTTPeeTe9H6/XbwSxDkKzWq9UYQI/CLbLFqK1PCIt1vVLZ67V90yjdq/Q388u86sQD82oSsuITdTcivCvX1eoOVtXXb4wfTReqTe3EwEem6jbmFJQy9/g7Wuhu1Gau0y54WBE5oQn71KbE2PruLOBYJMZCIeJ76p5QyWwM44Bryyb+bNZudJWPdV3bDxj302jVkKS+OuIZSMV/SR51q32z1isp5LQhKzliVdtmzgiBXrHbdKKyVpknp8SLOFKqIwEjSfhGKH9rc6lqNWkM5sgDSPpn1WTP10m6cKRIOMZyMej5+p1xbYGi02aL3KbBOnezll0VgCR4n9iI77ElBUKkZ+d+ObEI++dgzxQrDfVEiXTY7a8UP18pS0X5lt4Vf/l1LEDiBH/fAKasSjI10va48P9zF6DNkfw4NJqKEQ+K5VWPtG4FF4APLJaM5lqMWQU9vQnH/tFGHYgTgg3/XwXtgWGXebkJ2D9VpxU/L2Ik5FAoJIz5YZYFF4CPWJjTqQLB4JBlDxAeLwCH/OvjjGso60GfIYtQv/+4bxiJwJn0UvF0HDYeKKi38ugexSIiUzTiTXfakIMg5lO0BRufC4b6oLyalYwugP0bOY/9utmhYZU6Y9X4VxeUcyjwDf6yyrNlnaNiBZmd+xGmW19ZpOFBUaeGXIBhN2o8z2WVPCoKMg75R63P8mEBO5R6nUzFqDcXqmnf+XUtwDjsQ7B5IRDz37zoZZwKr+d+6p4e7LBXs9xmysKxTL2shsg67VUZ9sYydsyrtsCcFQc5hQZBOeds90uoz5FTu8UbA28tFvE4qFrZ1qI6F4d+NNa0ML3AyzgQbh7usrHn3HbIOtJew8CPrxknL3vocP9JH3zCCQEQeEJEzInJeRD66xes/KyIvm4fXf1lEjrS8VheR581/j21+rxtkikbqpVOHaHhtEVh9hpzzjRoCxevvMOpgNWXa4zx2J1MvwZ/sMye10UQ0TDIW9nQONWN9Dq6D5bV1T7sEvGEsAhEJA78LvB+4DfiIiNy26bJvASfNw+s/B/xWy2trSqm7zX8fsDuedsgVqwz3GeliTuB1n5WNPkO9q81lTN+oU4ykvM34sLRRJy0C8FYYO5lwAP4oRNbvdYLRZNTzLgFvGEEA3AecV0pNK6WqwKeBB1svUEo9qZQqmQ+fwTik3jeyDhWTWViHu3jl33VeE/J+E3KqoM8i7XGw1en8bz8Od3Ey4QC8zz5rxgicsuxNoeiVe6haa5Av194wguAAcLnl8Yz53Hb8KPBXLY8TInJKRJ4RkQ9u9yYRedi87tTi4qKtATvVXsJiNBWjoYwsBi9otgZwKEbghyDIOmwReK6NOhyo9DrzqeZgnyELr9tM5IpVkg7FmcB7y3jZYavSDp4Gi0XkB4GTwH9qefqIUuok8M+A3xaR41u9Vyn1iFLqpFLq5Pi4vYNRnWo4Z+G1NreRLeHMGaeJaJhULOxpwDvncJBsJBXz1L/bjDM5dM6s14e7WEqLs4Ig7mlBmdNulWYDRo8EgS5VxeCMIJgFDrU8Pmg+dw0icj/wS8AHlFLNHVMpNWv+Pw18FbjHgTHtSLbkXOoltLYR9mYC5Rw2icGKc3gjyMrrdUrVuuPuOS+P3MwVqww51OIDvD/cxY05lO43XENe1aM4nXFj7QleCQI37kG3ODGLnwVOiMgxEYkBHwauyf4RkXuA38cQAgstz4+ISNz8eQx4O/CyA2PaFqWUo4VA4L1rJVOsMpCIEHVoEwJDm/NqE3Kyx42F1/fAjSCfl0kHTtfSWJ9VqTUoVb3pAuv0OvbNIvD5LAJwQBAopWrATwBPAK8An1VKnRaRXxURKwvoPwH9wJ9uShO9FTglIi8ATwK/oZRyVRCslo2ul25oEp5pcy7kHnt5uIvTQT7wvt+Q0zEO8DbO4YpV6YNC5KRbJRYJMRCPeHcPSvpYBPYO7DVRSj0OPL7puV9u+fn+bd73NeBOJ8bQLm5oo15rEk7HOMD4e7wyt+roZ27HRh985zchrzI+ssUqR9JJRz9zNBnjykrZ0c/cDqcO1WmlNdh6aNTZv81WOJ15Bh5bZQVLEDgTZ7LDnqssdkMQbBzu0tsWgVf+XTcsAq8zPtyoCPUy62Yj68m5TcjLpInyep1ite7SPfBuHTsZZ7KD/yPwGDcEAXibQ50rOpv2B8bfo1prUPTAv+vGPbCqxL2wCKw4k1sxAm+E8Tr98QjxiHNdL71Mmmi2+HDaMk56t46dTmO3w54TBE73GbLwUptzJVBpadQeNA3LmamXQw6lXsKGVebFInYjzgTeHu6SK1UdtQbA21bUGQfbmLfiZb8hpwtb7bDnBIEb2RLG53nTeG6tWmdtve64JuRlwDtbMmIcTrX4sPAq4O1W2l+z55MH88iNYHcqFiYWCXl0D5yvgwCvrTLnY33dsucEQa5UJRENkYw5Eidv4tUmtBHkc1ib83gTciNANmK2+nCbpjLhcNqfl3EON7RRETFcpF7MIbfWQTJGtd6g4IFVFriGfCRTcF4TAvNwl5L7moRb2qiXB4u41WjLq02o6V50IXMLPLwHbqwDj1ykWdOF6Ub2HGxYHG6hlDLdc4Eg8AWn2x9bWP7d1bK7moRbwW4v8/DdCHaDdxkfbt8DLzZStzYhz+5Bad3RVvIWXp3Nka/UWK+rwCLwi4xLfjmvtDmn2x9bJGNh4pGQJ5tQxiWLYCQVI+uBVeZGDj54F6exWny4ZpV5FKdxspW8hVc1QbocWm+x5wRBziW/nFfaXNYlt0TTv+vyAmiaxC4I47RHKbDZYpV4JETS4QPHk7EIiWjI9TiN0338W/Hq7OWsSxZN2qNDmnRqOAd7UBC4lbLlVQ51rmgcOO5k6qWFF1WVq+UadRdSL8G7gLcV43DjwHEvzlVwo6DPIt0fo1StU153WRi7GOuDwCJ4Q1Op1Sk4eOB4K15NICv10okDxzczmoqTK7kbJHOrjsP4TLOVs8uZQ26eKuXFAepupV62fqbb2VtuVNeDmQIbdj8FNrAIfMRaAO5YBN74d3PFdde0iNFk1PVimoyLmtDG2cvuu+fcFAReKBPG73IhhdcjH7tb90BEPLkHgUXgI1YmgBtS2KvDuzPFiismMZjBVo8WgBvfoSmMPXINuYEX9ShupV6CN0kTbqdeeiKMi1VikRAph+NM3bKnBEHTInBpI/VGk1h3vDWAxWgyRqFSo1Jzz7/rVsYNbGhXrrslXKwINVxDLls0ZuqlK3Emyz3n4jqwUi/dUoisA3bcxKrjcCPO1A17ShA0LQKXDoLwIuvGja6XFtZGuuxinMDNGIHV4sDNe1Cp1cm7FGcCI9ZUXm9QqrpXj+L06WqtjHjQ/M/NOQTGd3BbmXDTquyGPSUI3D4azu2qSjdOV2vFC7PeMomdTr2EjRRYN7OGml0vXXQNgbvurWzJnYwbMAq8RAyrwy3cKuizGHV5DoG7Cl03OCIIROQBETkjIudF5KNbvB4Xkc+Yr39dRI62vPaL5vNnROR9ToxnO7Jm10unqxEt3D68O19xp+ulhReHu7htErutzVkbtGsWgQd57G600LYIh4ThPneTDrIuB1pHUzHylRrVWsOVz4c3oEUgImHgd4H3A7cBHxGR2zZd9qNATil1I/Ax4DfN996Gccbx7cADwO+Zn+cK2ZI71YgWbh/e7bZJ3LQIXNxI3Ur7s3A7TuNWZbeFV1aZm9kqbicduFVUaTHadJG6rBC9kQQBcB9wXik1rZSqAp8GHtx0zYPAo+bPnwPeLYZK+CDwaaVURSl1AThvfp4ruP3Hd/vwbrc1IS9S/7y4B26O3+38by/SkHMuuobA2KC9EMZu9AwD9/turdcb5Mu1N5wgOABcbnk8Yz635TXmYfcrQLrN9wIgIg+LyCkRObW4uNjVQIeTMW6ZHOzqve3gtjbntiY0nHQ/48NtbdR1i8Btt0SzMNGdWJNSyhOLwFX3XLFKLOxe6qXbAW/dagjAocPrvUAp9QjwCMDJkye78r38x++/09Exbcbtw7vdDpJFwyEGExEPYgTuHdY9moqxWq6xXm8QdSErJmPFmVxIvQQYiEeIhsU1bbRgpV66lIIMhqLywuVl1z7fOLQ+6lqcye3mf5brVZeqYnDGIpgFDrU8Pmg+t+U1IhIBhoBMm+/tGdxuPOe2fxog3R93LeNjvd5gtVxrBkTdwO1aAjdTL6GlstWlpAO3a2nA/bM5ssV1V8fftAhcmkPWvdXldDJwRhA8C5wQkWMiEsMI/j626ZrHgIfMnz8EfEUZs+Qx4MNmVtEx4ATwDQfG5AtuN57LFtddNYkBRlxsM5FzsbWBxWjTrHdHmHkR5DN6Prmrjboap0kaZ3O4dcpXrlR1rRYI3HeRNuNMLn6HTrEtCEyf/08ATwCvAJ9VSp0WkV8VkQ+Yl/0BkBaR88DPAh8133sa+CzwMvAF4MeVUu62LXQRtxvPWWl/blYjutn0zM1eTxZexGncDLSCu4WJbmeewcb9dfMeuKlNR8Mhhvqi7q3jkn4WgSMxAqXU48Djm5775Zafy8A/2ea9vw78uhPj8Bu3D+92qwd7KyPJGC/Nrrry2W4Hu8EbQXAk7Xz8p5XRVIzLuZIrn+12nMn47A2N+kg65fjne2OVuZd0kGm6htyzjDtlT1UWu43bh7sYFoG7k2fUxVO+vIhxjLjcitqLilBXYwRe3AMXfey1eoOVNXeOOm1l1MXMp1zJ3ThTN+gzkjcIbmoSbpvEYIy/6lIthBc92Ju1EC5spFaLD7c3obRZ2epG879ssUokJAzE3UsY3Djly/k4jXVehtv3YCQZcy3Wl3HplEQ7BILAYdz0sXuhjbrp321mS7j4HZopsC5oc6tld1t8WFixJjcC3lYNgZtxJssqcyPpwAvXlvH5UVczz3SqIYBAEDhO2qXGc5ZJ7LpF4GJ1cbZYYTARcSW/vxW3rDKvNqGNehTn55EXwe5+F2shrL+J299hNBUnV1x3xUWqW3sJCASB44y45N9dWVtHKQ9MYhf7DWWKVdL97tUQWLgtCNzW5txsPGcc6OJunElEjOZ/bozfOmbT5dTL0VSUar3hSgqsF8K4UwJB4DDpVIyiC4d35zzI/279fLfMei8yJdwWBG77d93MfPJKG7WSDpzGsra9iBGA8+4563Q1twVZpwSCwGHc0uayLh443or7m5A3FoEb/l23z7OwcPNMglzJ/YwbwDWLIOPVPeh3xzK2TlcLgsVvcNzaSC1NyO0FMJiIEA6JKxtp1qNsiZGUO+3AvaoIHTJbpTs9h+oNxXLJ/cwzMFw37lgERuql23GmjU68zsZpdGwvAYEgcBy3GlZ5tQlZ/l2nNyEvTeLRpDspsLlSlXgkRF/U3QPHQyFhJBl1fA4tl6o0lDfNztxqRe1V6uWGQuesa6jZ4iNwDb2xcavxXMZDTWI05Xx5vdER1BuT2C2rLFMwNiEvDhx349jTZtaTBwH7kVSMlbV1anVnT/nKFrxJvXQrVmZZBEGw+A2OW/7dbLHKYCJCLOL+LTP8uw5rQh6lXrb+DqcFQc6DFh8WbgS8vSjosxhNRlHKyHZzErdPuLNwKwXWi6Z/3RAIAocZTLjj3/Uq9RIM95PT/l2vsj3AvRTYjIf53+lU3Hn3YsG7TcitduBeuYbcSoH1UiHqhEAQOIzh33Vem8sWK55NHncWgDdZT7Ch8Tpdz+FFewkLNywCSxh70f7YjTYTXrX4sHCjS0CuaMSZki62ku+GQBC4gBuN5zIFbxdArlSl0XAu68YPi8BpbdTLitDRVIzlkrM+dq9SL6Gl+Z+D62B1zZsWHxZupCFbVqUXcaZOCASBC7jl3x3zKNNgJBmj4bB/d8M/7b57yzru0cl7UKnVKVRqngX5LK095+BpcZmCN6mX4E6cJuOhRQPm2csuuIZ0cwtBIAhcYbTfWUHgh0kMzvrYs4UqfdEwfR6YxG6kwHrV2sDCjY00W3T3ZK9W3GhFveFf9yhW5oJl/4YUBCIyKiJfFJFz5v8jW1xzt4g8LSKnReTbIvJPW177IxG5ICLPm//utjMeXUinYmQKzqX+bZjE3iyApmvF4U3IywXgtFXmxaE6rVh/Kycbz2WKFc8qWhPRMMlYuKfvwUjS+RTYN6QgwDhy8stKqRPAl83HmykB/0IpdTvwAPDbIjLc8vrPKaXuNv89b3M8WjCaipl5885MoCXLJPYsY8UNs947bRSc9+96ne2RdqFViR/C2GllAry3ypYddJF6adl3gl1B8CDwqPnzo8AHN1+glDqrlDpn/nwFWADGbf5erUk7rFE3m5156BsFZ816r/K/LUYcNuszHga7W3+Po8K44E2vJwunG895WQcBzt+DSq1O3sM4UyfYFQQTSqk58+erwMROF4vIfUAMeK3l6V83XUYfE5FtZ6mIPCwip0Tk1OLios1hu4u12JzaiLzM/4YN09vRjbTgbevdUYdTYL049L0Vq0urU4WJjYbR4sOrhAPA8ThNtlglGQuTcLnFh4XTgmC55G2cqRN2FQQi8iUReWmLfw+2XqeMDl/b5huKyBTw/wI/opSyfCa/CNwCvAUYBX5hu/crpR5RSp1USp0cH9fboHB6Am20P/ZGm+uLhUlEQz0fI1heW6fuUApstlhFBIY9EmaRcIjhpHOtPpbX1ml4cJ5FK27EabwePzhn2Wc0bS8BsOvBpUqp+7d7TUTmRWRKKTVnbvQL21w3CPwl8EtKqWdaPtuyJioi8ofAv+lo9JridOM5K/Ds9oEirRhNw5zxja5V66yt1z3VhEZTMZQyGq05UZGdLVUZNruCeoWTG6k1hzx1zzlslXl91u9GwN6Z7+DVmSLdYNc19BjwkPnzQ8Cfb75ARGLA54FPKqU+t+m1KfN/wYgvvGRzPFrQtAgcyhzKFKsMJCLEI95VIxopsE6N39tgNzgf5/Aj28NIX3RuDhmf6WWMIOroIU1en/U7nHT27OWMx+7FTrArCH4DeI+InAPuNx8jIidF5OPmNT8AfDfww1ukif6JiLwIvAiMAf/B5ni0YCQZQ8RZ15DXB1mMpuJkHSpm8jr/G5xv/ueHIHDSIvA64cD4Xc5mPnl9D+KRMAPxiGMBb6/jTJ2wq2toJ5RSGeDdWzx/Cvgx8+c/Bv54m/e/y87v15VwSBjuc66fvF/a6PRiwZHP8qPRltMFTdlilWNjKUc+q11GU3Geu5hz5LO8zriBa2Nl+4f7bH+el3UQFiNOuuc8jjN1QlBZ7BJOanNLhYqn2jRYRXFOB7v92IScsmq8OeKxlXQqRq607kjPp404k3ffwcpQWnLARVqq1iivNzxfB04KglzR+zhTuwSCwCWcbCOc9bDPkEW6P87aep1StWb7s6yF5OUmtNH0zP4mZKVe+uEaqjeUIz2fvDrisRUrHuGEQmF9htcWQdph95yObiEIBIFrOGURNI949GEBgEOLuFglGhYGE7Y8kR0Rj4Tpj0ccsQjy5Rr1hvL8nFkns8+8zriBjXx5J9aBXxk3TmY+BYJgD+JU4znriEfPBYGDm1C2UDUD6N6axE4d9+h110sLJ+tRMgXvzrOwGIhHiIVDzRYpdsj4YFWCkfmUKVYxyqTsEQiCPUja7HVjt6DJ8u16vQltZHw4s4j9WABOHSxiaaNeWwROnn/txyYkIqT7nYk1Zf1yDfXHqdQalKr2U2CzPlj27RIIApdoLWiyg9dVxRbWgltyYBHnSt42nLMYc2gT2vBPe30PnGtVkvXwqNNWnHKRet1wzsIpF6nXreQ7JRAELuGUWe9XEUrTNeSENlf0ttmZRToVdyRjpWkReFjZ3fr77B652WgoX2pRwNConWjJbsWZBuLexZkAxgaMebto8zuslo1W8l5ble0SCAKXcEqba2qjHmtCyViEvmjYGddQwfv8b4CxAUMbtZt+6Zcwtgqa7M4hP/oMWYw55J6zzuz2Os401sx8srcOdD203iIQBC7hlEXg5Vm/mxl1oJZgvd5gtVzzRRNKp+LUGorVsr3MoaW80fUyGfNWGwVnkg68PLR+M07MIbDqOHywKh1KmrAEyZgP7rl2CASBSzg2gYpVBuLe9hmyGOuPsWRz/DmffLuwcQ/suocyxYpvC9gJH7tfMQ5wrh4l60NVMbTMoby9ObTkU9JHuwSCwCUsDdiufzdbrPrWvzzdH7ftGvKjtYGFtXnbDXgvFSqeF/RZOHFurp9uCadiTVmPG85ZxCNhBhL23XOL5vcfDyyCvUUsEmIgEbG/kRb8yzRwwqz3cxOyBIHd77CU9yfjBpyphbCsOj+00WbWjQOWsR/KBBjzyK5VuZSvIBLECPYkTmhzfi4AKwfcTjGNH32GLJxyDRkWgV+CIE7WZkGTZZX6EqdxoB6lWmuQL9d820SdSENeKlQYScaIeNjioxP0HNUbBCf8u4Zv1J9NaCwVp1pvUKh079/140AUi5FkjJDYy/ioNxTZUpVxH11D63Vl6x5kixUGExFiEe+XuxP1KH4f6OJEGvKST5lz7RIIAhextLluUUr5HCOw799dKlQJh8QXbTQcEkZTsaZ/thsMbXwjn9xrnMg+W/KpmAycmUOLeX8zbtL9Dlj2haq2GUNgUxCIyKiIfFFEzpn/j2xzXb3lUJrHWp4/JiJfF5HzIvIZ8zSzNwx2XUNWnyG/NImNo/q614YW84YmFPKp9W46Za+gqZnt4ZNV5sRxiVkf40xWPYoT92DcJ2E81h8nV6pSqzd2v3gblgoV35SJdrBrEXwU+LJS6gTwZfPxVqwppe42/32g5fnfBD6mlLoRyAE/anM8WjHab3Qu7Na/63cRihNZN0uFim8LGOxrc0vN/G9/hbGd7DO/qootxgZitlwrlkWwzzdBYLSLydk4sW+p4H0r+U6wKwgeBB41f34U49zhtjDPKX4XYJ1j3NH7e4F0KmYUNK1159/dKATyZwFYC2/BRg71oo+BVjD+dnY2Icul0cuuoUzRn15PFvsGErZaNCz6XIyVbipE3X2H8nqdQqX2xnUNARNKqTnz56vAxDbXJUTklIg8IyIfNJ9LA8tKKWuXnAEO2ByPVth1rfh1GIeFUdK/oZF1w2LeX4vAbsbHku+bkD3XkF+H6rQy3h+3PYf64xH6Yt4XVYL9xnMbMQ59LYJda+ZF5EvA5BYv/VLrA6WUEpHtfCBHlFKzInID8BXzwPqVTgYqIg8DDwMcPny4k7f6Rqs2d8N45+9f8qnPkEUkHCKd6n4RK6V8dw2N9ccpVGqU1+skop1vJIuFCrFwyNNDdVpJxiIkoqGu0y+X19apN5RvMQ4wfPtfv5Dp+v1Lhaq/c2jA6hvW3T3wW5loh11nt1Lq/u1eE5F5EZlSSs2JyBSwsM1nzJr/T4vIV4F7gD8DhkUkYloFB4HZHcbxCPAIwMmTJ+2fEuEBdhvPLeTLiPg7gcYHuhcEK2vrrNeVv66hZvpihYMjyY7fbxSTed/srBU7x54u5MsA7Bv0dw7lSutUa42uUlgX82VfK3KtxnPdxsqs9+ksCOy6hh4DHjJ/fgj4880XiMiIiMTNn8eAtwMvKyOC+iTwoZ3e38vYPapvIV9hNBnz9JzZzYwPxLv271oCxG+LALpfxH72GbKwU4/SvAc+KxPQvUa9mK8wNuCfW2WwzzhprVuFqNlw7g2cNfQbwHtE5Bxwv/kYETkpIh83r7kVOCUiL2Bs/L+hlHrZfO0XgJ8VkfMYMYM/sDkerUjbDPQtrPrrVgFjA+m24ZYlQHTYhBZWy129388+QxZ2BMHCqplxM5hwckgdYd3/bjfSxXzF1zkkIowPxJvWVadspCD3cIxgJ5RSGeDdWzx/Cvgx8+evAXdu8/5p4D47Y9CZRDRMMha2EWQq+y8ITNeQUqpj98iGReDfApgwN8BuM5+W8lVunRx0ckgdk07FOL9Q6Oq9Cz6nXsKGMO5GEFRqdVbLNW3WQTcsFYwOwt3EqLwiqCx2GTtNwxbzFfYN+KfJgbEAqvUGK2ud51AvNTsu+vcdxvqNzKduBIFSikyx4lv6roUtiyBfJhULk/L4ZK9W7AiC5hzyWRDsG4gz36VVuah5MRkEgsB1uq0uVkqxWKj4GuQDe4t4MW9m3PT5twkZmU8xFrsw63MlI9g94fM9GO2PsbZeZ62LA9QX8hVf3UKwkfXW7RwC/wOtE4OJrq1Kv11b7RAIApfpVpuzNiE/TXqw599dzFdMjdy/jBswCprmVzsfv6UBTvi9kdqoR9FhE4pHwgwno10lHeiQcACGRbBcWqdS61wYz6+WmRjydw7tRiAIXGasy2IaKzDl+wIY7P7wbr9rCCz2DXYX6NsQBH5vQt3HORbzFcZ9Hj90X1Tmd58hi+Y66PA7KKUMQaDBOtiJQBC4zORQgqVCpeOGVRv9VfyPEYAdi8D/BbBvIN7MnumEZsaNz/fA2oTmVzoXZgurZd+tSug+2Gq9x8+CONiYA51alqvlGuX1hu9W5W4EgsBl9g0maKjO89g3NiF/F4BxXnKoO21UF4tgwBDG9UZndYiWReB3nGZy0NqEOhMExUqNYrXuuyADzPTL7gTBcDLqy1kKrWwoRJ3dgwVN5tBuBILAZaxFfLXDRbygiW/UyqHuVJtbrzdYKlR8F2RguHYaqvMDaubzZUaSUeIRf9P+RlMxomHhaofaqN9dO1uxXEOdduJd8Lmq2KLbNGTLgggsgj1Ot9qcDml/Ft0IAmPRw+RQn0ujap/xLn3s86sVLRawiJgB795UJqwxrJldODvh6kqZqWH/51A6FSMcko7vgS4JB7sRCAKXmRgy/btdLGK/0/4susmhtiygKQ2yJSyzvNOA8cJqWZsFPDnUjSDQxy3RrUY9t1JmUoPxh0LCWH+s41jTfF6PhIPdCASBy4yl4oRDwtUOA31+t29uZWqor+PxW9frsJFONK2ybiwCPe7B5GCic/eiJsFuMAQZwNxy+99hvd5gsVDRwqoE4+/YsVW5UmYgESEZ89+y34lAELhMKCTsG4h3vIj1EgQJ8pUa+XL71cWWINDBIrB8zJ1oc/WGUdCngyADQ6vvNGtoIV8hGhZGklGXRtU+1jyYW1lr+z2We1GHOQSGVt+r7sXdCASBB0wMJjrahJRSzK2sMaXJBLK0uU6sgqurZeKREMMabEKxSIiRZLQj11DGzDLSxT03OZigWO3Mx26kjiZ8L+iDDatsroM5ZF07qYkgGB9IdNy8cD5f1saq3IlAEHhAp2Z9rrROeb3Bfg2CZEBzHFc6XMSTQ3psQmBsRJ24hprZHppYZd0I49nlNfYP67GJJqJh0qlYR4LA+q6TmgjjfQPGuRDVWvs1QQurFSY0cM3tRiAIPGByKNGRWX9l2TCfdVnEzRTYDsz6+ZWyNgsYLEHQ/j3QLdtjo6Cpg3m0sqaNMgEwNZzoaA7plHAAG+ux3XvQaCgW8mVtrMqdCASBB+wbjJOv1Ci2adZvCAI9FvHEYAIRuNJBoG9udU2bBQzG33J2uQNBltdLEFgWQSeb0NWVMlOaBFoBJgf7OrQI1khEQwz1+e9ehBbLuM15lCtVWa8rLbKediMQBB7QaVHZXDPQqscijkVCjPXH23ZLKKWYX6lo1Wjr4Egf2WKVUrU9YTy/Yh0TqsdhIp3OoaVChfW64oAmViUYmn2nMYKpoT5t3IsHTEHQrkLRK8VkYFMQiMioiHxRRM6Z/49scc0/EJHnW/6VReSD5mt/JCIXWl672854dKXTorIry2vEIiGtTjTaP5TgSptmfbZYpVpvaBPsho1F3K5VM7tsuLYiPh4T2kpfLMxgItK2i3FWM6sSDNfQytp628L46opegdZOLQLrOl2C3Tthd5Z/FPiyUuoE8GXz8TUopZ5USt2tlLobeBdQAv665ZKfs15XSj1vczxaMtFhoO/KSpmpoQShkB6aEBiTud3xb2R76LMJ7e9Qm5vJlTg4os/4wbgH7WrUulmV0JpC2t53uLqql2vLCnh3MocADo0m3RyWI9gVBA8Cj5o/Pwp8cJfrPwT8lVKqZPP39hT7zck8m2tfk9iv0QIAY0NpewFrlvYHcGCkM21uJrfGwRG9FvCB4T5mOphD1nt0wdrU21EoGg2jfbNOcwiMeTTbplU5kzNiHDpZ9tthVxBMKKXmzJ+vAhO7XP9h4FObnvt1Efm2iHxMRLa1A0XkYRE5JSKnFhcXbQzZe/piYcYH4lzOtSf/riyvMaWRbxcMba7QZlGZbtkeYKSBhkPSljCu1RtcXS1rZxEcGk22PYdml9dIxcK+ng63GWs+tCOMM0Ur0KrPHAJDqZtt8x5YyoQuMY6d2FUQiMiXROSlLf492HqdMtoKbttaUESmMA6xf6Ll6V8EbgHeAowCv7Dd+5VSjyilTiqlTo6Pj+82bO04NNLHpezuE6hWbzC/WtZKkwOajb/a0eZmcmtEw6LFWQQWkXCIycFEW5vQ3EqZekPpJwhGkuTLNVZKuwvjuWWjWZtOm9DEYPsuUus+6aRMgGERXFkut9VFdWZZP/fiduwqCJRS9yul7tji358D8+YGb230Czt81A8An1dKNWexUmpOGVSAPwTus/d19OXQaJLL2d03ofl8hYbSy7cLLdpcG4v4UrbIwZEkYY1iHGDkgc+0IQgs94turqFDo8acaMcq0K2GADZ87O3MoYum0nQknXJ7WB2xf7iPtfU6uTaEsWER6HUPtsOua+gx4CHz54eAP9/h2o+wyS3UIkQEI77wks3xaMvh0SRzK2us73JS2ZxmxWQW1oS+3IZVczFT4rCGAbIDw31tWQRWkE+3RWwJpnbugRFn0msOARwcTbY1/kuZIoB28+hAm5lD+fI6y6V17ZSJ7bArCH4DeI+InAPuNx8jIidF5OPWRSJyFDgE/M2m9/+JiLwIvAiMAf/B5ni05dBIkobavfvirIZBPoCJgQSJaIjXl4o7XqeU4lKmxJG0fgtg/7DRRXW3k8pmcmuI6GeVHTb/pru5GMvrdZYKVe0sAoCj6SQXdplDYCgT+wbi9MX8PRRoM9a63C1ov2FV6ncPtsJWJEkplQHevcXzp4Afa3n8OnBgi+veZef39xIHW8z6wztskpa2pNsiDoWEI6MpXs/svAnlSuvkKzXtNDkw/Ls1Mxtlp7/vTG6NycGE78cjbmYwEWWoL7qra0hXZQLgaDrFYy9coVKr73jy28WsrspEewFvXd2L26HXTH8DY22Mu5nF00tFJgcTWpxMtpmjY0lez+yszV00X9fNtwvt1xLoWENgcWi0b9dY0/SicQ+Ojet3D46OJVGKXb/DpUyJw6P6jX80FSMRDbVhEZg1BJrOo80EgsAjpob6iIRkV7N+erHIDRouYDC0uUuZ0o6ulUvNIJ9+mtBRUzjt5prQsYbA4tDI7imkF5YKABwf6/diSB1hKQg7uRjL63Wurpa1nEMiwtF0qvk33o6Z3Bp90TCjPVBDAIEg8IxwSNg/3MflHTQJpRTTiwWOjekpCI6kU1TrjR0PF7louo50dA0dGukjFg7x2sL2i1jXGgKLQ6NJZnJrNHYQxtOLRdKpGEManAWxmWOWINjBsryssTIBcOO+fl5b3E2ZMKxKndJ3dyIQBB5yeJeMiWyxymq5xg3j+mlyYJj1sLHZb8XFTImJwTiJqF5BPjBqCY6NpTi/gyC4mDUsHh1dW2AIs2rNOMJxO3S2KoeTUQYTkV3nEOipTAAcH+/ncq5Eeb2+7TWvL+mZObcdgSDwkEOjSS5mitsWo0yb5vINmloE7bhWLmWLHNHQt2txfF+K1xa3FwRnr+YBuHliwKshdcThNu7B9FKBGzR0C4HpWhlL7WgR6FpDYHF8Xz9KbX8PqrUGry0WuHlSzzm0FYEg8JCbJvrJlda31eYumOamrtrc5GCCeCTUDAhvxcXMzllRfnPjeD+Xsttrc2fm84gY5r+OWALqjCmwNrOyts5SoaploNjiaHpnQXApU2QgHtHirOWtuNG02LdTKF7PFKk1FDdpqkxsRSAIPOSWyUEAXp3behG/tlQgGhYt0/7ATCFNJ7dNIc2X11nIV7SNcYChzTXU9u6tc/MFDo8mtctft5gYjDOcjPLq1dUtX7+guVUJRi3BbG5t2yMfp5eKHBnTt0fPsbEUIvDawtbCzBLSgSAI2JJbp4yJ8crcNot4sciRdEqbHvhbcTSdYnobTejlK8b3um3/oJdD6ojjpja3XZzgzHxe6wUsItwyOcAr2ygT1r3RNc4EcHQsZQrj6zdSpRSnr6xy25S+c6gvFubAcB/nt1kHZ+fzhEOirWW/FfruOG9AhpMxpoYSvLqNWT+9VNRakwNjk59eKlLY4tjNl0xBcMf+Ia+H1TbHx/sR2VoQVGp1Xl8qctOEvpsoGJbl2fn8lplD04tFwiHROlB5uzk/Xpxdue61uZUy2WKVOw7oO4fAzBzaTpm4mudoOqllwsR2BILAYwxt7nqLYK1qbEK6+qYt7jo4jFLw0haL+PTsChODccYH9Ok6uhlLm9vKv3thqTd8u7dNDVKq1resJzgzn+dIOqldVXQrN+7rJxkL88Ll5etes4SD7oLg+Hg/00uFLYXxuYXeChRDIAg855apQV5bLFznH31hZplaQ3HvketO+9SKNx00Fui3Z5ave+2lKytaWwMWJ/b1b+lj7xXf7i1NF+O1lqVSim9ezHHPIb3nUDgk3HFgiBdmtlYmQgK3TurrGgIj8aO83uDCJvdWeb3O65mi9nNoM4Eg8JhbJgdYr6vrNNLnLuYAePNhvRdxuj/OwZE+Xrh87SJeq9Y5v1Dgds01OYCTR0c5O18gW6xe83yv+HZP7BsgJFwnzC4sFckUq7zlqN5zCOCug0O8PLd6nUL04uwKJ/YNaBustzh5dBSAr09nr3n+/EIBpfRNP96OQBB4jBUE2+weOvV6luPjKUZ6oCT9rkPDvLDJInjl6ioNBXf2gCB46w3GIv7Ghcw1z399OsttU4M7NkPTgb5YmKNjqWZw3uLU64YycbIHBMGbDg5TrTU4O3+tVfPSlVVuP6C3NQBGVtb4QJyvb5pD37hgCAbdXVubCQSBxxwbSzHUF+Xvzi01n2s0FM9dzHHyyKiPI2ufuw4OMZNbY6mlHuJ007er/yK+88AwfdEwT7+2sYhXSut881KOd97cG6ffnTwywtPTmWs06lMXs4wko83MKJ256+AwwDUKxfxqmcV8pSfciyLCW29I88x05poC0SfPLHB8PNUTB9a3EggCj4mEQ9x/6wRfemW+eUjNa4sFVss17u0BTQ42FvHzl5abz33l1QX2DyW0O2N2K2KRECePjvBMi1n/d+eXaCh6RhC897ZJ8uUaz0xvCLNTF3Pce2RE2/z7Vg6N9jGSjPKtljn0N2eNs8h1j5NZfMexUeZXK82alFK1xtens/yDm/f5PLLOCQSBD7zv9glWWxbxM6Y5ebJHFsBdh4YZTET4/POzACzkyzx1bokP3nOgJzYhgLfekObMfJ6MadV89cwCg4lIU8jpzjtOjJGMhfnrl68Cxj2YXixyb49YlSLCO2/exxMvXW2mIn/uuRmOjaWaCQm689Yb0gDNdfz0axmq9Qbv3GuCQET+iYicFpGGiJzc4boHROSMiJwXkY+2PH9MRL5uPv8ZEdHfQe4A333TOH3RME+cvsp6vcHH/3aaWyYHtK7IbSURDfNP33KIL7x0lbmVNR57/gr1huIfvfmg30Nrm7cdNxbxYy9cQSnF35xd5LtuGte6mK+VRDTM99w0zhdfnqfRUPy3p6YRgffc1jub0A+97Qj5So3Pf2uWS5kS37iQ5UP3HuwZZeL4eIp9A3H+x7dmUUrx5JkFkrEwbznWGwpdK3Zn/UvAPwKe2u4CEQkDvwu8H7gN+IiI3Ga+/JvAx5RSNwI54EdtjqcnSETDvPPmcf7i23P82l+8zMVMiZ973809swAAfuitR2koxX/+67N86huXuOvQsPY1EK3cc2iY7zoxxv/5xBl+7nPfZiFf4X23T/o9rI547+0TzK9W+M0vvMqjX7vIP37zQW7c1zvZKvccGubOA0P80d9f4He+cg4R+P57rjvIUFtEhJ++/ya+cSHLv/38S/zpqRneefO49skGW2FLECilXlFKndnlsvuA80qpaaVUFfg08KB5YP27gM+Z1z2KcYD9nuBfv/sEg4kon3z6IiePjPCuW3pHkwPj/Nz7b53gT5+b4bXFIj/6jmN+D6kjRIT/4x/dCRguiR95+1H+4ZumfB5VZ7z/jined/sEv//UNAj8zHtu8ntIHSEiPPSdR3ltscifPjfD9945pd0Rrbvx4bcc4juOjfKpb1zi2FiKX3vwDr+H1BWyXUvkjj5E5KvAvzHPKt782oeAB5RSP2Y+/iHgO4B/DzxjWgOIyCHgr5RSW/4lReRh4GGAw4cP33vx4kXb4/abUrXGf//6Jd51yz6te8NsR7ZY5fSVFW6eHGDfgP5B4q148tUFzi3k+V++64aessgslFI8/uJVImHpOYsGjIy5r1/IMj4Q59hYinCo9+7BTK7EJ5++yP/6Pce1T/8WkeeUUte58XcVBCLyJWCrGfZLSqk/N6/5Ki4LglZOnjypTp267lcFBAQEBOzAdoJg1xPSlVL32/zds8ChlscHzecywLCIRJRStZbnAwICAgI8xIsUiWeBE2aGUAz4MPCYMkyRJ4EPmdc9BPy5B+MJCAgICGjBbvro94vIDPA24C9F5Anz+f0i8jiAqe3/BPAE8ArwWaXUafMjfgH4WRE5D6SBP7AznoCAgICAznEkWOw1QYwgICAgoHO2ixH0RvVMQEBAQIBrBIIgICAgYI8TCIKAgICAPU4gCAICAgL2OD0ZLBaRRaDb0uIxYGnXq/Sl18cPvf8den380PvfodfHD/58hyNKqet6rfekILCDiJzaKmreK/T6+KH3v0Ovjx96/zv0+vhBr+8QuIYCAgIC9jiBIAgICAjY4+xFQfCI3wOwSa+PH3r/O/T6+KH3v0Ovjx80+g57LkYQEBAQEHAte9EiCAgICAhoIRAEAQEBAXucPSUIROQBETkjIudF5KN+j6cTROQTIrIgIi/5PZZuEJFDIvKkiLwsIqdF5Kf8HlOniEhCRL4hIi+Y3+F/93tM3SAiYRH5loj8hd9j6QYReV1EXhSR50Wk57pPisiwiHxORF4VkVdE5G2+j2mvxAhEJAycBd4DzGCck/ARpdTLvg6sTUTku4EC8Ml2TnHTDRGZAqaUUt8UkQHgOeCDvfL3BzDP2U4ppQoiEgX+DvgppdQzPg+tI0TkZ4GTwKBS6vv8Hk+niMjrwEmlVE8WlInIo8DfKqU+bp7RklRKLfs5pr1kEdwHnFdKTSulqsCngQd9HlPbKKWeArJ+j6NblFJzSqlvmj/nMc6mOODvqDpDGRTMh1HzX09pUiJyEPhe4ON+j2UvIiJDwHdjnr2ilKr6LQRgbwmCA8Dllscz9NhG9EZBRI4C9wBf93koHWO6VZ4HFoAvKqV67Tv8NvDzQMPncdhBAX8tIs+JyMN+D6ZDjgGLwB+a7rmPi0jK70HtJUEQoAEi0g/8GfDTSqlVv8fTKUqpulLqbowztu8TkZ5x04nI9wELSqnn/B6LTd6hlHoz8H7gx023aa8QAd4M/Bel1D1AEfA9XrmXBMEscKjl8UHzuQCPMP3qfwb8iVLqf/g9HjuY5vyTwAM+D6UT3g58wPSxfxp4l4j8sb9D6hyl1Kz5/wLweQy3b68wA8y0WJKfwxAMvrKXBMGzwAkROWYGaD4MPObzmPYMZqD1D4BXlFL/2e/xdIOIjIvIsPlzH0biwau+DqoDlFK/qJQ6qJQ6ijH/v6KU+kGfh9URIpIykw0wXSrvBXomk04pdRW4LCI3m0+9G/A9YSLi9wC8QilVE5GfAJ4AwsAnlFKnfR5W24jIp4B3AmMiMgP8ilLqD/wdVUe8Hfgh4EXTxw7wb5VSj/s3pI6ZAh41M9BCwGeVUj2ZgtnDTACfN/QKIsB/V0p9wd8hdcxPAn9iKqTTwI/4PJ69kz4aEBAQELA1e8k1FBAQEBCwBYEgCAgICNjjBIIgICAgYI8TCIKAgICAPU4gCAICAgL2OIEgCAgICNjjBIIgICAgYI/z/wPwyqWUC27THAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "pl.plot(t, p)\n", "pl.show()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "data = pl.array([t, p])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When dealing with table data, you should always consider whether to use the .transpose() of a matrix" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame(data.transpose(), columns=[\"t\", \"p\"])" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tp
00.0000000.000000
10.0315740.197085
20.0631480.386439
30.0947210.560635
40.1262950.712838
.........
1956.1568900.833697
1966.1884640.926180
1976.2200380.982332
1986.2516120.999949
1996.2831850.978341
\n", "

200 rows × 2 columns

\n", "
" ], "text/plain": [ " t p\n", "0 0.000000 0.000000\n", "1 0.031574 0.197085\n", "2 0.063148 0.386439\n", "3 0.094721 0.560635\n", "4 0.126295 0.712838\n", ".. ... ...\n", "195 6.156890 0.833697\n", "196 6.188464 0.926180\n", "197 6.220038 0.982332\n", "198 6.251612 0.999949\n", "199 6.283185 0.978341\n", "\n", "[200 rows x 2 columns]" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "df.to_csv(\"pressure_computed.csv\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Adding a column to the existing DataFrame:" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1. , 0.98038635, 0.92231478, 0.82806328, 0.70132909,\n", " 0.54708365, 0.37137759, 0.18110338, -0.01627502, -0.213015 ,\n", " -0.40139897, -0.57403714, -0.72415738, -0.84587087, -0.93440313,\n", " -0.98628127, -0.99947025, -0.9734527 , -0.90924922, -0.80937835,\n", " -0.67775774, -0.51955052, -0.34096273, -0.14899989, 0.04880781,\n", " 0.24470092, 0.43099506, 0.60038243, 0.74621842, 0.86278226,\n", " 0.94550148, 0.99113122, 0.99788155, 0.96548768, 0.89522032,\n", " 0.78983588, 0.6534683 , 0.49146692, 0.31018662, 0.11673853,\n", " -0.0812889 , -0.27612758, -0.46013452, -0.62609162, -0.76748884,\n", " -0.87877953, -0.95559807, -0.99493106, -0.99523559, -0.95649971,\n", " -0.88024292, -0.76945657, -0.62848651, -0.46286261, -0.27908187,\n", " -0.08435349, 0.11368385, 0.30726168, 0.48878646, 0.65113746,\n", " 0.7879461 , 0.89384572, 0.96468219, 0.99767677, 0.99153518,\n", " 0.94649833, 0.8643329 , 0.74826202, 0.60283883, 0.4337679 ,\n", " 0.24768142, 0.05187907, -0.14595836, -0.33807024, -0.51692053,\n", " -0.67549342, -0.80756852, -0.90796489, -0.97274423, -0.99936544,\n", " -0.98678423, -0.93549413, -0.84750712, -0.72627468, -0.57655245,\n", " -0.40421361, -0.21601856, -0.01934969, 0.17807823, 0.36852061,\n", " 0.54450692, 0.69913369, 0.82633533, 0.92112205, 0.97977564,\n", " 0.99999527, 0.98098778, 0.92349877, 0.8297834 , 0.70351786,\n", " 0.5496552 , 0.37423105, 0.18412683, -0.0132002 , -0.21000942,\n", " -0.39858053, -0.5715164 , -0.72203322, -0.84422662, -0.93330329,\n", " -0.98576898, -0.9995656 , -0.97415196, -0.91052496, -0.81118052,\n", " -0.68001565, -0.52217559, -0.34385199, -0.15204001, 0.0457361 ,\n", " 0.2417181 , 0.42821815, 0.59792036, 0.74416776, 0.86122346,\n", " 0.94449569, 0.99071789, 0.99807689, 0.96628403, 0.89658645,\n", " 0.79171819, 0.65579296, 0.49414274, 0.31310862, 0.1197921 ,\n", " -0.07822354, -0.27317068, -0.45740207, -0.62369081, -0.76551384,\n", " -0.87730783, -0.95468738, -0.99461712, -0.99553071, -0.95739231,\n", " -0.88169799, -0.77141703, -0.63087545, -0.46558633, -0.28203351,\n", " -0.08741728, 0.1106281 , 0.30433384, 0.48610138, 0.64880047,\n", " 0.78604886, 0.89246268, 0.96386758, 0.99746256, 0.99192976,\n", " 0.94748624, 0.86587537, 0.75029855, 0.60528953, 0.43653664,\n", " 0.25065959, 0.05494983, -0.14291545, -0.33517455, -0.51428565,\n", " -0.67322271, -0.80575106, -0.90667196, -0.97202656, -0.99925118,\n", " -0.98727786, -0.93657629, -0.84913535, -0.72838512, -0.5790623 ,\n", " -0.40702443, -0.21902008, -0.02242417, 0.17505139, 0.36566015,\n", " 0.54192504, 0.69693168, 0.82459956, 0.91992062, 0.97915568,\n", " 0.99998109, 0.98157993, 0.92467404, 0.83149567, 0.70569997,\n", " 0.55222156, 0.37708098, 0.18714853, -0.01012525, -0.20700185])" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "v = pl.cos(2 * pl.pi * t)\n", "v" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "df[\"v\"] = v" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tpv
00.0000000.0000001.000000
10.0315740.1970850.980386
20.0631480.3864390.922315
30.0947210.5606350.828063
40.1262950.7128380.701329
............
1956.1568900.8336970.552222
1966.1884640.9261800.377081
1976.2200380.9823320.187149
1986.2516120.999949-0.010125
1996.2831850.978341-0.207002
\n", "

200 rows × 3 columns

\n", "
" ], "text/plain": [ " t p v\n", "0 0.000000 0.000000 1.000000\n", "1 0.031574 0.197085 0.980386\n", "2 0.063148 0.386439 0.922315\n", "3 0.094721 0.560635 0.828063\n", "4 0.126295 0.712838 0.701329\n", ".. ... ... ...\n", "195 6.156890 0.833697 0.552222\n", "196 6.188464 0.926180 0.377081\n", "197 6.220038 0.982332 0.187149\n", "198 6.251612 0.999949 -0.010125\n", "199 6.283185 0.978341 -0.207002\n", "\n", "[200 rows x 3 columns]" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is possible to create an empty DataFrame and just add the columns whenever you like:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "empty_df = pd.DataFrame()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "empty_df[\"t\"] = t\n", "empty_df[\"p\"] = p\n", "empty_df[\"v\"] = v" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tpv
00.0000000.0000001.000000
10.0315740.1970850.980386
20.0631480.3864390.922315
30.0947210.5606350.828063
40.1262950.7128380.701329
............
1956.1568900.8336970.552222
1966.1884640.9261800.377081
1976.2200380.9823320.187149
1986.2516120.999949-0.010125
1996.2831850.978341-0.207002
\n", "

200 rows × 3 columns

\n", "
" ], "text/plain": [ " t p v\n", "0 0.000000 0.000000 1.000000\n", "1 0.031574 0.197085 0.980386\n", "2 0.063148 0.386439 0.922315\n", "3 0.094721 0.560635 0.828063\n", "4 0.126295 0.712838 0.701329\n", ".. ... ... ...\n", "195 6.156890 0.833697 0.552222\n", "196 6.188464 0.926180 0.377081\n", "197 6.220038 0.982332 0.187149\n", "198 6.251612 0.999949 -0.010125\n", "199 6.283185 0.978341 -0.207002\n", "\n", "[200 rows x 3 columns]" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "empty_df" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACDUUlEQVR4nO29eXhk2Vnf/zlVpapSlUpbae1W77P0bPbMuG28sRnbjAPxGGJim80Bgp8QlhAeCPYvvwCB8AtkARIeE+LYYBMWMzg4NmAYL4w3ZmxPj2dfeple1WotVSpJtaj28/vj3FsqSbWcc+ve0rR1v8+jR9KtU6Vzdc857/t+301IKfHhw4cPH/sXgb2egA8fPnz42Fv4gsCHDx8+9jl8QeDDhw8f+xy+IPDhw4ePfQ5fEPjw4cPHPkdoryfgBBMTE/Lo0aN7PQ0fPnz4uKHw2GOPpaSUkzuv35CC4OjRo5w+fXqvp+HDhw8fNxSEEJdbXfepIR8+fPjY5/AFgQ8fPnzsc/iCwIcPHz72OXxB4MOHDx/7HL4g8OHDh499DlcEgRDiD4QQy0KIZ9q8LoQQ/10IcV4I8ZQQ4t6m194thDhnfb3bjfn48OHDhw99uGURfBi4r8PrbwFutr7eA/wPACHEOPDLwDcBrwJ+WQgx5tKcfPjw4cOHBlwRBFLKLwKrHYbcD/yRVPgKMCqEmAW+E/iMlHJVSpkBPkNngdIbzj4IX//f2sOvrW3yV08u8JIq1Z1+EbKL2sNzpSqr+bKHEzJAvQ4LT0C9pv2WR15Ms16oeDcnU+SW4fE/UfeigVK1xgOnr7JRfAndQ2EVFp/WHl6p1bmSLng4IUOkX4TihvbwF1dyXFjJeTghQ9Rrag3lVrTf8vcvLHFmMevZlPqVUHYQuNr0+7x1rd31XRBCvAdlTXD48GHzGUgJp/8Azn8OJm+FQ6/qOHxhbZN/+vuPcG1tk7qU3H93y2n1D4VV+Mv3wPnPwORJ+IlHINBejpeqNX78jx7jy+dWGIqE+PJ738BwdKCPE26Br/4+PPg+GD4Ib/lPcNt3dxz+hbMrvPsPvkYyHubX3nYn/+iu2T5NtA2qZfizd8G107D6InzHL3UcXq9Lfu6BJ/mbp67z+TPLvP/770UI0afJtsEX/hN8+XeguqnW0NTJjsM/8MUX+e+fO0+uVOV//fAp3nT7dH/m2Q7pF+H9r4JACO59N7zlN6HD/zRXqvJ9v/8Ia4UyP/TqI/y7776dUHCPXaNf+i146D/A7N3wI38L4VjH4Z944hr/6qNPMJmI8Hf/6ptJDkVcn9IN4yyWUn5ASnlKSnlqcnJXhnR3CAHf8/swMgcP/DDkU22H1uuSf/aHX2Njs8LJmQS/9IlnWdoo9jB7F/DYh5UQuON7YOUFOPM3HYc/9MIyXzy7wv13H2SjWOWBR692HO85qiV4+L/DzF0wEINP/1slnNtASsl//fQZDoxEmR2N8rN//gS5UrWPE26Bz/6yEgKHvgm+9F/huU92HP47nz3L3zx1nVceHeNTTy/yf5+41qeJtsHKWXjo1+Ho6yAUhS//VsfhuVKV3/rMWW6bTXBgJMoHvvhinybaAQ//LogA3PRG+Nr/hKWWbskGPvLwJVbzZd58+wwfeeQyDz671KeJtsHlh+Hz/x/MvRKuPwmf/OmOw5+eX+cX/uIpXjY3wnqhwi/+n6c8YSj6JQiuAYeafp+zrrW77g0Gx+D7PgzZ6/D0X7Qd9vS1dc4u5filf3w7v/cD97JZqfE/Pr/Hm+DZj6vF870fhLFj6iDqsCD+8uvXmExE+M9vfxmvPDrGhx++RK2+hxTXUw+o//sb/z28/mchcwkWvt52+IPPLvHU/Do/+6Zb+HffdTvlap3Pn1nu23R3obgBX/2fcO8Pw7v/CpI3q9/bQErJA6fn+Y6TU3z0Pa/h3sOj/ObfntlbmvG5/6u+/+P/Bqd+VO2B1Qtth3/62UWKlTr/5r6T/Ng3H+fRSxmevLrWl6m2RG4ZnvhTePm71D2IIDz9sbbDs8UKH/jiBd5wcor3/8C9JONh/vaZ632ccAt86b9C4gD80MfhtT8Nz/wfZe23wcceu0owIPjfP/pNvPctJ/ncC8s84cEz6Jcg+CTww1b00KuBdSnldeBB4M1CiDHLSfxm65p3OHA3jB+HC59vO+QLZ1cQAt5wcorjk0O8+niSfzjf3oLwHOkXYfEpZQ0EQ+ogXXgcrn6t5fBMvsxDZ5a5/+UHCAUD/MjrjjGf2eSzz++hNvTV31fWwIk3wMnvhsAAPPOXbYc/cPoqc2ODfO89Bzl1dJyJoTB/94y+b8R1XP4HkDW48+0QisCtb4GrX4VSa+757FKOxY0ib7p9mmBA8E9eMcfiRpELqXyfJ96EZ/8vHH4NDB+A1/6MegaPfqjt8P/7xAJzY4O84vAY//TUHEOREH/wDxf7N9+dOP2HUCurAzQ+ASe+Xa2hNsL1U09fZ32zwk+/4SaCAcGb75jhoReWKVb0fVSuolpWFsHJfwSRBNz2VkB2PIu+eC7Fq4+PMxIb4Eded5S/+qnXc89h9+Np3Aof/TPgEeBWIcS8EOLHhBD/QgjxL6whnwIuAOeB/wX8SwAp5Srwa8Cj1tevWte8xfFvg0tfhlprB94Xzq7wsoMjDS7uNceTnFvOsZIteT61lrAPzNvfpr7f9lb1/crDLYf/9VMLVGqS7713DoA33z7NyODA3mnUhVVlwt/xvYqiGxyFm9+k7quF07Velzx2OcPrb5ogFAwQDAjedPseb+ILX1B0yqFvUr+f+HaoV9TGboEvnlWOwG+5RdGYrz0xASjn955g5SwsP6uUCYDENMydajv/5WyRL59b4W13HyQQECSiA9x35wxfPLuyd1bNxS8qRW7iZvX7nW+H9SttFaLTlzKMxga4+9AoAG+5c4Z8ucaXzu2RUjf/KFQKcOxb1e8H7oHoCLz49y2HX10tcDGV55tvVmtICMGdB0c8mZpbUUPvklLOSikHpJRzUsoPSSl/X0r5+9brUkr5k1LKE1LKu6SUp5ve+wdSypusrz90Yz5dcfzboJyDa4/temm9UOHxKxm+9ZYtP8Srj48D8JULe7SJX/hrdQCNWA7r2Dgkb4Krj7Yc/uXzKQ6Px7j9wDAAoWCAlx8a5Ymr6/2a8XbY/+e5V25du+N7ILsA1x/fNfzFlRzrmxXuPbKl+dxnbeIv79UmvvgFOPxqGIiq3w+/BoIRuPBQy+FfPLfCTVNDHBgdBOBoMsbMcJRH9mwN/RUgtpQIUM9j8SmobO4a/g/nU9QlvOWumca1ew6PkilUuLK6BxFEtaqygpvX0MnvUlbNmU+1fMtjVzK84vBYw0H/mhNJRgYH9o4euvgF5d84+nr1ezCkhMKLD7W0ar54brsy4SVuGGexqzj2LYBQD2AHvnR+hbqEb711659/18ERhiKhvdnE1TIsPQtHXrv9+twrlYbRYgE9u7DBy+a2aw53z41wdilLobwHDtf5R9UGOHDP1jVbs77+5K7hj13OAHCqSRC85niScDDAo5e9Nxh3IbsEy88pBcLGwCAceU3LNbRZrvHVi6vblAkhBK89keQrL6b3RqO+9nWlPAw3RV4dehXUqy2fwbPXNoiEAtw6nWhcszVrLzjqrlh5Hir57YIgOgxTtylhtgOr+TIXVvLblImBYIDXnkjydWt99R0XvqAihQZHt66d+HbYmIfUuV3Dv3Q2xYGRKCcm455PbX8KgsExdSi14OYevbhKPBzk5XOjjWuhYIBXHh3bG4tg5QVFQczctf363Cshvwxr28uLrxXKzGc2uePAdkHw8kOj1OqSZxf0469dw/yjMHUHRIa2ro0ehshIy3j2xy5nGI+HOTaxtQHCoQA3TQ3x/HXvYqnb4uIX1XfbpLdx/NvVAZXd7nt54uoa5Wqd1980se36q08kSefLnF3ag5j2xadh5s7t1+asEOoW1MozC+ucnB3eFmp563SC6EBgbwTBvEUizJ3afn3mZXD9qV0K0eNX1GH/iiPb+fTbZoe5vFog3+8ItFJORZwd37GGTrxBfb/4hW2XpZQ8ciHN62+e6EvI8f4UBKC0ocWnd3HUZ5ay3Dyd2BVr/OrjSS6s5Enn+uwnsA/KmZdtv25rRvPbG/Q8Zx30dx4c3nb9ZZZge+LKmtsz7Ix6HeYf272BhVDC7fpube6xyxnubTLpbZycTfDC9T0QZAuPK//A7Mu3X7fvaUcI45lFNUebmrPx6mNJAB691GerpriuFIadysTQJIwdhfntgkBKyXMLG9yxY/6hYIC7Do7sTeTQ/GmIJVXEXDNmXwaF1K4ky8cuZwgGxDaFDuDkTAIp1T7vKxafVtbX4ddsvz56RCmmS89uu7y0UWJ9s+KZT2An9q8gmLxVmZob89sun1vKbTOHbZycVZvi3HKftbnFp1Xc/fjx7denboeBuNK2m/DMgvID7LQIJhMRDo4O8sT8mpez3Y30OSitbzfpbczcpTZAU6bxar7MhVR+lyYHcPvsMMvZUv+F8coLMHELBILbr09ayVgrZ7ZdPrucY2RwgKnE9sSfQ+ODxMJBzvd7DdmHzE5lApRVcHU7xTif2WSjWOXOA7sPoZfPjfLMwgblql5mtWu4dhoOntqdPGYLtx300NevZLjjwDCD4e3P7DZrHz/fb4Vi5QX1feq27deFUOvIft3CWUtQ3Ty1+yzyAvtYEOzexKlciXS+zM3TQ7uG3zSlrvV9Ey8+DdN37D6EgiFFb+2wCJ65tsGBkSjj8fCuj7r70Gj/tbl2Jj0oba66qcJjLbxgadN3tdCETs4MW2P6rM2lzm6tl2bEJ5SWuvL8tsvnlrLcMj20y6IRQnBicmhv1hDA9J27X5s7BblFleNh4ZlrtjIxvGv43YdHKVfrnpY72IXihtqnrdaQfU9NgkBKRYG2WkNzY4MkoqH+C4LUWaXQDc/tfm3yJCw/v00Y24LglhZnkRfwBUGTJN765++WwgdGov3X5qS0uN27Wr8+dVJp3E0L6NmFde5oY07eNTfCfGaT9c0+1r1JnVWRHcmbdr/WQpu7sKLi7I+3cJDdNqueS183cSkL61eVBdkKk7dtUyaklJxdynFzizUESqHYE0EQm4DEzO7XJm5R39PnG5eeXdggGBDcOrP7Hmwroa/PIHUOkEoh2onosKKLmnxN6XyZbLHKicndh6gQgttmhvvva2pYlS2O3MmTUFxTCXMWzi3lSMbDnpSTaIX9Kwhi4xCf3CYIzllOvFYbwNbmXuxn8aq1K4pWaScIkjcp/tfKTCyUq1xI5VtqckDD+Xqpn0lN6fMwfmy3RQMwcasSEk2C4GIqz+BAkJnh6K7hyaEIk4lIfzdx6qz63soiACUgVl5oCOOVrOJ2b5lqrcndNDXE4kaRbD+L0NmO4lZOR1tAbxME69w8NUR0YPczmxsbJBQQXEz3cQ2tWhZjK2UClGV5ffsagtbKBCiF4oXrG9T7mWm/cra9MjG1Wyk9t5xtsBD9wP4VBGBxc1va3NmlLMPR0C5u18ZNU0O82E9tznZCTrcRBOMn1HdrE19YySMlLX0c0CQI+rqJL2zNcydCYbUJFrecrRdTeY5OxAkEWkdK3DY73F9t1F4fbS2Ck0oY51TkkB0R1MqqBBpa6osrfXoGtaqiHdopE8MHlSO8iZ47u5RrqQyBchgfGo/1X5kQAeXYboXpuyBzsZHlbVcaPT7R+iA9OTtMvlzjaqZP+RDFDeWLtK2vndjBTkgpObeUa7uGvIAvCFbONLS5s0tZbplOtA3XumlqiIX1Yv9Cz+zNOdlmASWtA9bSmOxEn8PJ1tUMD4+r65dSfdoA9boSBMk2ggCUlpfZKltwYSXXVpMDFfVxfjnXv7pJK2eU1bIzWsWGLSCWlZ/AjkbpRA1BH31N61ehVlLWVysEAkpQW2utXK1zfX2TI+PtK2IeTca41M+y1OkXVbHIUBuaJGkFUlih1BdSeQaCgoNjgy2H20Kub2G8do5AO6tyaBqiow1BsLhRJFuq9s0/APteENwKpQ3IXm9wu7e00YSgWZvr0wLKXFKhZdE2IWSjR1Q5XssiuGxtziPJ1gdpdCDIgZFo/yyCjWtQLXYWBGNHFQVWr1Gu1rma2eT4RHtBcCQZo1yr968a7MoZVdIg2KZiux0FYlkO55ayjMfDTAztdtaDmn8oIPonCDKX1Pd22jSog9RaQ6rsOhxus4YAjk7EuZzO9y8xbvXF9lYlbAlp614vruQ5kowTbGNV2kLuar8ypFNdrEo7cmhZCQJbQLVTJrzAPhcEWyZZOl9mfbPCTS0cTDZumlKbo6+buNMGDobU69YmvrKaJxkPMxRp32bi6ES8f4KgG7cLahPXq7A+z5XVArW63JZIthOHxvq8iVdeaL+BQfmZBscakUPnl3PcNLU7YsjGQDDA0Yn4S0wQWFZZrcpla20caWNVgqIYC+Uay/2ovSUlpLtYlfa9rSrL8mIq33ENjcfDxMPB/pXKWHmhs1UJiiK11tC5RuiobxH0B3bxqtR55jOq3srhDibxkWS8/9pcpw0MahOnVSnhy+kChzrMH9Q99I3ftR2QHbW5o+p75lKTk6/9BrDvry+buFpWz6AdtwtKm0ve1CjnPJ/Z7LiGAG7qZ9DB2mV1CA0faD8meZMljK80BGynezia7GPQQT6lAiY6KRODYypLPaNKrV9OFzrSi0IIDo3HmO+XjyB1TgmydlYlqD2ymYHiOvOZTRKRUMsQcK+wvwVBfEoVDlu/0lgUc+OteUVQ2tyh8ViDgvEU9ZqiTLoJgvETSvOWkiurhY6aHMCxiRiZQqU/7R/TFyA0CIkOncW2CYKcNcf2m/jg6CBCwNXM7kJprmNjHpCKguuE0cOwdpVStcZStshcG27axtGJOPOZQn+iVjKX1PxaRW3ZaEQOvcjldIFIKNA2YAL6HHRgW5WdlAkhYOwIZC5xLbNJuVbvSC+CUij6ZhFkLnffx6NWW5a1q8xnChwcG+xrN7v9LQgCAeWEWrvasAgOjnbexAdHB7m21o9DaEHVGOpqEZyASoFy5hoLa52dfNCkzfVjE6fPq/l1aKnJ8EHl58hc4sJKnomhMCOD7VtqhkMBZoejzPdjE69ZXd3sTdoOI4dgfZ7rmQJSwtxY52dwcGyQSk32h1rRsSqbos+urBY4PB7reAgdGB0kHAxwsR9BB3bARCdqCFSIcuYiFxrKRGda5dBYjKurm/3xc6xfVWukE0at9rtrV5jPbHZVJtzG/hYEoB7AupLCI4MDJLr09e2bINDhdqGxQdJXnuvq5AOljUIftbmdpTF2IhhSmyRzicvpQldaBfqoza1bgkBnE9crLC+oqJVuysSc9fq1tT7cQ+aS0pY7IT6hqBVLEHSzKoMBwaHxwf5QQ6svqk5k9kHZDlbQwZWU4tePdrmHw+ODbFZqpHJllybaBptrKiClqzJh3d/6Va5lNrsqE27DFwSjhxoWgY4UPjg2yEq25H2DFF1BYL2+vqBC1LptYqXtbSXdeIZ6XVFb4x0cZDbGjkLmEtfXNzmosQEOjcf6EwO+dgUQymrpBOuQ2lhUfoJu6+hAQxB4HPm0uaZ4525rSAgYO4xcu8qV1e5+JlD0UH+UiYvq/xvsrKAxdhRqZTaWrxIOBpjokpFr36Pn60hXmYhPQGiQUuoi2VK1qzLhNtzqUHafEOKMEOK8EOK9LV7/bSHEE9bXWSHEWtNrtabXOncD9wIjhyG/zPLqmpYgsDfx4rrHmzhzSWlCrWqTNCNxABAU02rBddOoowNBphIRrnnNsedXVFvBbhsAYPwYMnOJhfUiB0Z2ZxTvxKGxGEsbfRDGa1eVfyPUxWln3WMpdZFgQDDb5R7s+HbPn4FdorybIAAYnqO2dpVCudaVXgRFf/XFMl6fV/RtN1j3WFu9wOxotG1Coo3D/QohbdCLXSwaIWD0EMXUJaC7MuE2ehYEQogg8H7gLcDtwLuEELc3j5FS/msp5d1SyruB3wWam9Vu2q9JKd9Kv2GZbHJtXsscO9jQ5jzeBJlLagN0ijQAdUgNTSHX54kOdHby2ZgdGeS614LMruraTZsGGDuK2FwlUs01BG0nHE6qMfNeH6TrV7tvYGhaQ1eZGY7uKmG+E0ORECODA95TQ7pWJajud+vqmbXLQ2nGzEiUbLFKzuvkyo1rmoJAWZ4D65e7CmLY8uN4Lgh0LQKwgg6uAN39TG7DDYvgVcB5KeUFKWUZ+Chwf4fx7wL+zIW/6w6sBzRRW9KSwnP91OZ0NjDA8EHC+evMjXV28tmYHYmysO71IXpNfR/REwQAh8Sy1iZu5BJ4bdavXenO7QKE4xBLEsnNt81m3YmDo4PeryETQTB8kFB5gxhFDnWInLNhP6dFL9dRrar6DOgoEyNzIILE81e1lInBcJDJRMR7X9PaFVXCY2iq+9iRQ4RzCwDa68gtuCEIDgJXm36ft67tghDiCHAMaO7WHBVCnBZCfEUI8bZ2f0QI8R5r3OmVlRUXpm3B2ugHRUpLCk8PRxGiHxbBZT1tFGDkIMPlJa1DFJRFsLhe9DZiYsMSBN2oLWjc55xY0bMILLPe08ihes3SRjUEAcDIIRLF69om/YHRQRa89hFkLqus9HaZ6c2wtO5ZkWZ2RJ8i9fQecksga3rKRHAAmZhhuLzMAY35g1pHV1f7YFWOzLUu+LcTo4cZrGRIhiuMxbr4RFxGv53F7wQ+JqVsJnePSClPAd8P/I4QomWcmJTyA1LKU1LKU5OTLjZzThygLoKWIOi+gMKhANOJqLeCoFZRHLuOJgQwPMd4bYUZDVoI4MBolEK5xsamh2b9+rzShGLj3ccmVLLTtMhoCYLJRIRwMMC8l88gu6iSrHQsAqA+cpjJ2lIjIqgb5sZU9Jm3wnhBTxBDY62diKwR75CZbsOuDnvdS4vARJkAKvFZplhldlRPITowOui9ZbymETpqw1KI7hnO9jWHANwRBNeA5juds661wjvZQQtJKa9Z3y8Anwfu2f02DxEMkY9MMSdW9M36sUEWvD6EkJ2zQZtQGz5InCJHh/QO9hnLcri+4fEmHj6opwnFJ6mJIHPBjJYmJIRgajjCkpd+jga3q2eV5aKzHBBpbUFwcHSQXKnqrTDOLmxvVt8JlkVwa3Rda/jMiLKMPbUILJ+FlkUA5COTzIhVLWUCYGY44r1lvH5VW5mwBcEdsTXv5tMGbgiCR4GbhRDHhBBh1GG/K/pHCHESGAMeabo2JoSIWD9PAK8DnnNhTkZIBac5Ekwz3CWHwMYBr3MJNhRPqCsINsKKfzw6kNEab5v+1z3dxNe0508gwHpwgqPhDW1NaGY4yqKXhed0k8kspAamGRRljsb06Cpb6Zj30mG8cb1zVnczhg9QR3AsvKY1fCAYYHIo4m30XMMi0FtHmaAlCFr0smiF6eEopWrdu0ZNlU1l2WsqE7blcELzGbiJngWBlLIK/BTwIPA88ICU8lkhxK8KIZqjgN4JfFRuF7+3AaeFEE8CDwG/IaXsuyBYFJPMiZT2+IOjg1xfK3pXIiBrCQLNTbwkJgCYC6a1xtu+BE8jh3SjPSwsM87B4Jr2+OmRKEsbHmbm2qGXmvewJBRdeRC9dXTQa469QS9qCuPgAGlGmQusav8Jz4MO1q+pvtzRUa3hS4wTFyVmB/UOdtsy9kyhsC0aTWWiEElSlkHmhIs+UE10JwM1IKX8FPCpHdd+acfvv9LifQ8DbTpm9A/ztTFeKTMqCapTOQQLB8cGKdfqrORKTGtqH0bYsPrHam7ihXqSk8BUXU8QTCUiBISH/G6tqnrg6vo4gGu1Ue4KtGMUd2NmOMrfP7+MlNIbPjV7XRUzC3cPpQS1hgDGpd5B2kgq8yryyZBerNbqXKuPMyX11hAoy/K8l8XzNuYVLaT5fK/VRgEYLi8Dya7jbT/H4nqx0Q/bVTQsGr19sJytEGKMpNSz7N2En1kMXKkME6IGBU2NumkBeYLsgiqGNzimNfxyaYiKDDJaXe4+GNVlaioR9c4iyC2CrGtzu5VancuVEUar+lbZzHCUzUqNrFdx7NlFfVoFuFJSteMHi3rPIBkPEwoIlryqN2Q3o0/oCYKVXIkFmWSsuqT9J2ZHox5TQwtGysSF0sjW+zRgK3HLXlmW2UX1Xdey3yiyLEcZruoLY7ew7wVBvS45v2k1gLA3TxdMDavoHM+Khm1cV04+TU1oMVthmTGiBb35g9rEnlkE62bRHksbRRblGOF6QbX108C0ZdZ75jDOLrZu9t4GF4sxagS2Nn8XBAKCqUTEuwY7DT+T3iG0uF7kukwyVFxqdOzrhtmRqHJ4e9V/ef2atjIBcMbhPvaMGmoI42mt4UvZEktyjFhJXyFyC/teEKTzZZbqliahuYmnEpYmkfVwARloQtfXi6SDkwhNTQjgwMigd87iDbNoj+vrRRalZcprbuLphNebeBGG9AXB9WyVjcCo9vwBJoejrLxELILF9SILcpxgbVPVJ9KAp0EH1bLKI9ANfwWe27DygDT3QSQUZDwe9nANLUF4CCJ6ncaWN4osyTEGNvWtMrew7wXBkvXPBxSloYGJoTBC4J2zcmPBiJZY3CiSDU9tOac0MDOiqCFPQuca2qgmN7pRYtF+Bht6foKGo88Li6BeV2vBwCJY2iiSDU+oza+J6UTEO1piw6IXdfI4UGvoui2MNQ/SA1a8vicO4+x1QBrRi9cLUAiNas8fFD3knVV53XgNrQbGCRTXVMRRH7HvBcFytsgKo+oXTYsgFAyQjEdY8cIikNLiRg0EwXqR8uAU5PT4aVBm/Wal5k3oXHZRNaTRyWhFPYNFrANrQ9MisPhdT6iVzVWVTKa5iaWULG+UKEUntdcQKGpiyUurMjGjTy+uF8kErGeQ0xNmMyMeFmA05NdTOSVQS4PTRlbZzHDEO4sgt2Sk0C3ZawiM1pEb2PeCYGmjRJkBaoPjRgtoyittbjMDtZK2SS+lZHGjiByagkoeSnpRHFPWQeoJNZFbUryo5iG0ki2xah9CWT1tLjoQZDQ24M0mbtAqeoJgrVChXKtTi88YraHpRJS1QoVS1YMqqhvX9UNHsSi2IYvL1lQoJoZUVVbP1hBszakL7L1YHZrVtipBWZae+Wmy17XnD0qpqcWtNecLgv7CXgSBxIyZWe+VNmfo5MsUKpSrdUL2eE1tbtKq1+7ZJjbYAMvZEsNDCRgc17YIwEoqW/dg/vY60I32sNZBYHgWCinFb2ugEXTghUKxYZDQh/LThIatQ0iTIo2ElDB+KQgCew6B4QNGa2h6OEoqV6ZcrRtPsSOkVOvIgBpayZYQ9j42UCjcgC8INkqK80/MGloEUW82sAMnH0B0zEwQeBr5lF3Sq7ZoYTlbYjIRUQeXIb/ricPefgaG2mh4zHpmeT2N2rbKXH8GUlrUkAktUWR0bEw5Nw0oxsmhiHeCQARUwxYN2P/DgbGDljDWm9NM4xm4vI6K61DdNPYRNNaQ5j52C/teECxvFFUUUGLWmN9N5UrU3M4uNrQIVixuNJa0nGqa9zCZ8Noi0N8AyxtFJhvPwEQQeFTioMFP692DbVXGk3Pb398Fdu+IZbepic0MVItGFsFKtqTmMzRtvA/sNegqcksQn4RAUGu4fZDHklYWr+Y9NMKQ3X4Ghj6OXKlKvlxjZGxSOfl9i6C/WMoWmR6OKE47t6TKD2tgajhKXULa7U1ga2OGJvHI5MHt7++CRCREJBRwfxNXilBcM6KGUrmSslCGpiGnn14/MxwllStRrbls1ucWVTJfSK+aq62NDk/ah5CZw9t1i8CQVsmXqhTKNaUcDE0bWwTeWGVm9OJKtsR4PExoxBLeeb11tJVd7PYzsASB5j3YgmhqeFCdRb6PoL9Y2rDKRCRmVe1zzezihjbnxSaOjmofQna0xPjEDARC2ialEILJhAdmvU2LaCbRVGt10vmy8lkMTaoNXNc72CctYbyad7kBuWFW8dJGkdHYAJExM6tsPKayi10/SA2VCXsNTQ7ZCpH+IWSvIdfDkB34mSaHIsqKAG1hZlvGKbcVIgdZxWBRtoY0tRvY14KgWqtb2mh0iwbQzUq0FpDrJmV+2YhfX8mWiIWDxKNhS5vT5xY9EQTGh1AZKdmyCOoVZVFoYNKOWnF9E5vHf08noorPFmbZxZOJiPv5KLY2rLmO7DUw0aCGzNZQsVJ3v2VlbtlYEDTWEGj7acZiYQLCS0Fg5meats8i3yLoHxqHUCKyJbl1uUXPzPoViOsLglSuxIQVAcTQlJkg8MKst/9/hofQVCJqrM3Z953KuW0RmPk4ljasQygQNOfYExHvqKG4XgMn+xkoq2waylko57Xe64mvqV5XB7nmIQqQcmgRBAOC8XjEG0FgkFVsK5QNdsJAGLuBfS4IrA2QaNIkNC0C+xByPXIoZxZxs2JH3IA6vAwW0NSwFxaBzU/rHaS2INr2DHRDYL06hAyzirc9g4RZLsFkIuq+szi3DIEB7aKF9j6YSIS37ls3+izhQT6KndCnaRFIKdUzGI5AKKyoVQM/x8RQ2IN9sGhs0QwOBBmKhNT7SutQ9rifchP2tSCwKYWJoeZDSM/JFA4FGI+H3c8lyK+YCwLHFkG0kYfgGnJLgDAO+1MRK9Z9azr6tiyCvT2Etlll8SltWgJU5JPrFoG9hgwS+gICkvGmZ2DIsbtKzxk6u9c3VUKfLZQcUaSuW5VmykQ6V1KCGJr2gf466hX7WhCkmk3iUFiVRDD457ueXVzZhNKGkSBINS+gxIyKodaMfLI3cTrv8iaOJSGo1+2twU9vM+v1NnE8EmJwINh4jq6gwa/r0Sq5UpVStd7IsmVo0ijyaTIRYTVfpuJm5JMdeqmJlVyZ8XiEYEBsWXK6YcheWMYNelGTX882Wfag9o+mMgHqHlxdQ2Cs0KVy5e3KBBito17hiiAQQtwnhDgjhDgvhHhvi9f/mRBiRQjxhPX1z5tee7cQ4pz19W435qMLm1tuHKRxs3o9E0MRlw/R5a15aKBcrZMpVJgcsjWhKdUHQHMTeEKt5JaNNKHlbJGx2ADhUEBRGYEBs2eQCLtrERg+g8Yaat7EhZR25JP9voybkU+GjtaVbKlJkJmVmRiNDTAQFC5bBHbAgd4zsIXQVMKZZTyRUD4CVyOfcitGwni7VWlZ0wbCrFf0LAiEEEHg/cBbgNuBdwkhbm8x9M+llHdbXx+03jsO/DLwTcCrgF8WQugRmy4gnVO8XCxsNWqLT0JevxZ4cihM2k2TsqGN6m1iWwhtmZRm/O5kwiNtziSreKO0ZdIL4Uibc/UQsv+25ia280iSjU08qaglzcinCS8in/Ir2haN/bcb2nQsCSKoHUIqhHA/u9i0vESuyc8ElkKnv4YmhsKUqnX3mhxVS4rjNw76uLGpoVcB56WUF6SUZeCjwP2a7/1O4DNSylUpZQb4DHCfC3PSwjZaBaw4dkOLwBNuVG8Tp7JKCG35CGyHt6Gz1W1tziDiZtshBOba3FCk8X9wBYahlw1H665NbObncE2hqNfVMzA5hJr9TIGAua/J7TDk3JIVcTOkNbylRVDOajtbG74mt+7BViY1/WS1umQ130wNWfv/RrIIgIPA1abf561rO/FPhBBPCSE+JoSwuznrvhchxHuEEKeFEKdXVtz5B23j5cCyCPQ/OzkUJl+usVl2qXqkIS2xSxNqOPr0NrHr1SOltKKe9LXRdK68dYiCOT2XcDn0L7+iNGLNhum2k3Fyp1mveQ9Jtx3emxmVGGkScdNSGBtkF3shCAysynS+TCQUUBE3YKxRbyWVuSSM82bUVqZQpi6b6MVQBCIjN56PQAN/BRyVUr4MpfV/xPQDpJQfkFKeklKempzUP2g6YRsvB+oQ2sxATa9G/0Tc5U3cEARm8d+7uMWCHr1lV490LZeguKYSwgz46XSutEWrgOVsNbPKVgtl98pM5JatGjd6W8PWIsfiTX4m0FYokpYQdM0iaBxCemsoW6pSrta3C4LYhBFFOul2LoSpRWPtY2FHSRlGALoefdawCDQt+wa96Jyd6BVuCIJrwKGm3+esaw1IKdNSSvu//EHgFbrv9RK7LQLbSaO3CWxaKe2Woy+/bNW4CXcfy5YG09jE4TgMxMz8HHEX/RyGG2CzXCNfru3YANNmZSYSEaSE1YKL92Dg5EvnS4zFBhgIWlvJkBpKREKEQwFSbgUdNJLJDLOKd+4DTWUCVNhpplCm7lYBxnzK2KrctoYMo8/se3fNqjFU6NI7Aw7s9xrs417hhiB4FLhZCHFMCBEG3gl8snmAEKK54MZbgeetnx8E3iyEGLOcxG+2rnkOxcuVttMShiZlMu4yt+gg2iMRCREdaKrQaKjNJeMRFwWZ9XdjSa3hDWd3fIdVJmsqnl8Dk27TW/llo0Mold2hTAyOqTITmoJACMFEPOyenyNnFnCwsjP0Eqw1pFdzC2A8HqZWl+41sc+vqDloIp0vkYzvUCZAex+Px10uM2EYcJDKtRLGZpZxr+hZEEgpq8BPoQ7w54EHpJTPCiF+VQjxVmvYzwghnhVCPAn8DPDPrPeuAr+GEiaPAr9qXfMcu3g5MHbSNMx617S5ZcP47x3cLkA8aaTNjcfD7hVtM464KTfm0IBhQpPrZSby5mF/27TRQFAdYgabOOlmGLIhNbQtu95GfEJ1u9Psm7u1D1x4BnWr8KPBM1jNlbfTi4Z+GlVmwsUw5PyKssw1nd1bVtkOq6aP1FDIjQ+RUn4K+NSOa7/U9PP7gPe1ee8fAH/gxjxM0FYKgwNu0UVq6MC92sNT2R2HEFjanL6TaXwozOqlPRIE+VbcaJPDe7pVFPJ2uBrxIaVx/Hc6X+aOA8PbLw5NGVllE0Nh9yK3cksQDGs7u+3/2zaNupkiHT3U4l3bYQvy1XyZE7267zYzgNR+BlJKUvkd1FBwQHW7M/Q1rbhlleVXtCOGQK2hgaBgZLApCXOoyV+pmZzZC/ZtZvEWL9eCW9SUxFGrNoh7zmKzQ2g1X27QUw3EJ7RLaYM6ADKFsjsNdgypoV3JWNDkbNU7SF0tI1zOq65SJhZBdkfAAahnYKDNJYci7vlp7DWkWV4inS8TEKoKZwMxs4QmWxC4EkrdUCb0DtKc5eye2LUPzCIAVZkJNy17s/DdZLzJ2Q1NZ1F//AT7VhCkdiYCgaoUGIoah5C6somrJRX7bKhJ7LYIkkaLZzweRkpYc8PZml+xeinoObvt/9u2e7CFiCa9ZZeZcMVHYBj2V6zUyJaq25UJcJahniu7k9laSBmvobFYmECg+RCyo8/0FApbGXGFGnJIL+7aB4YK0YSbZSYMAw520YtgrJT2in0rCLaV3rUhhOWkMclKdCmO3V60mtp0rS7JFMrbTXpQ869uapcRbjbre0bBMOJmZ2Y3NDlbDf0crggyZ2F/uy0Cs4iPiaEw5VqdjaILma35lJGjdXVnxA1srUHNexiLDzQ+q2cYWgRb9OKOZxBLGgmCccsydgWGmd3pfHn3GjKMPusV+1YQpHJlwsEAw4M73CSmSWVuhV8aZiOuFVQvhfFdgsDMrHdXmzMNvWxxCAUCit81obeGXHJ4uxH2B+oQqOS1hfFWLoFLCoWmMgHqIG27hgzyURKRkHtrCAyEsWURtLoHQ2WiUK5RrPSYHFqvmwcctKQXzfyVvWLfCoK0ZY6JnVyqobfetYgPQ4vA3nS7NSFbEOgdpK5aBPkVFbWkidTOZDIbhnHsYzGXBIHTsL9dkVtOy2m7YZWlzenFnfx6ZFgV/zM5SN0SxvmUsgg1eym0FcaxpFVSXC8fxbV9UFxT4c+aPgJVxrzcgl7sb5mJ/SsI8uXdmhBYGX0GWZXWBujZ2doQBJomcSdNCLQPUldD/ww1oXSuzESrZxBLGsWxJ90KgXXKT7ei50Bbm2tYZb1aBJUilHMQG9d+y65kLNiiSPciDDm/op5/INh9LFv/s117OTahKvFuZrQ+xzVB0LAq9fZxtlSlXKvvfgYNf6XvI/AUq+0EgU0NaTrukkMR6pLe+UVDi2C1rUVgyO9a0SI987v1GhRWjbNyd20AsPjdPTqEoiPazm7bL9ErPWdrgz37mgyViUqtzvpmpc0+MAs6SMbD7ikTRslkZYajKjt7GwwVokbkU6/3YFi00C4/Pr7TKhPCOLGvF/iCYCdiE0ZlhJNubeKGSTyqNdymo3rld8OhAIloiNVe6a3CKqbx3+mdiUA2DCM+xtzid00drVaxs1h4h/ZqGHVjP8OeqSFDZcJWXnZZNGCcoa6EsRuRW2ZRT7vqhdloRJ+ZPYOe+0LY+07Xss93egZmvrJesG8FQaatRWDGsdtmfc8adSFlNWbRNYnV3xuL7Ug2CQ9BMNJ/bc4w2mNjs0q1LtsfQoVV7U5rSbfMekN+3VYmdvmZDA+hUDDAaGzAhfmbBRxshV727qcZj6tOaz2HwDqgF1talYZ1w5KuWQRmz8AWPGPtziKDZ9AL9qUgKFVV/Pd4rM0hBP3n2Atp4/oqY7EBQsEdj9Dmd421ObcEgaajNd8m9BKsg1T2n981jLhpa1WG4xAa7D+9VbCqsxjSi20tY0M/TaUme2/uYhqCnC/tdnaDcT7KcHSAYEC4ZBmj7+zuaBGYhcD2gn0pCNYKqjjWeEtNwoxjd+0Qyrt0CIGDekORvguCtolAYKzNucbvFtJGjtaOzyCW3DoUNKCsMhfoRTCmJXZFrIBaQ+WsSnTUQGMf9GIZV8tQXDe2ytr6mUBbmAUCgrHYAKv5HgvnFVIqqVKzLERHi8D3EXiLRrEzFyyCsVgYIVw6hAxCL9vy6+CgAqkL1JCtuWgKgtV2Pg7YG35XSkc+gvaCwIzfdcciSANC38/UiLhppVEbCmM3LGNDaqtudfZqqU2HIioM1vgZuOCwN1TowqEA8Z1+JlCfYyCMe8G+FASZdtEeYOzoCwYEo4MDLiyglGEiUJsNAOb87lCYTK/8bn5FObs1i53ZmldLs940BNaNpLhSVjXVMXgGGas8Q0sYJzS5YJUVUkoAafqZVq06Q6ODLbRX00q8bljGhlbl2maFequkSht7EX3mhF6MtfAzwZZi2Ad6aF8KgnQnbnRgEAbixvXYe1pA9bqiEQy10ZYmMTjid6t1ycZmD/xu3hJkmp29bME5utPZDcYhsIloqHd+11Abtf1MbYWxIb+riv9VemvuYngIpXLKotlWZ8iG0/DLXqLnDIsWrnaiVezP6buvzFnAQUsYWsa9YF8KgkwnQQDGHHsy3mP1yEY2on6z60yh3NqkBzX/Sl67efcWx97LQWqqCVWIh4Pbm+rYMNwAit8N98bvGjpabT9T+0PILATWbu6yvtnDPeTNAg5WW5WXsGGYoe6KVdZ4BpoRN50se3AQ+eSWRWDgZyp0EgRm9FwvcEUQCCHuE0KcEUKcF0K8t8XrPyeEeM5qXv85IcSRptdqQognrK9P7nyvF0jnywgBo+3Mekcx1G5sAP34bynbRBqAsZ/DFYd3YdWMVimU2x+iDvjdZK/8rmmJj3ZZxTZiSShtKAeoBlyJPnPT2d2gJfTW0GA4SCwc7HEN2X4mPUHQMeoJHHRai7C2WXFeJUBKi57bhxaBECIIvB94C3A78C4hxM6OIo8Dp6zm9R8D/lPTa5tSyrutr7fSB2TyZUYHVbhYSzjg2HvbAM5M4rbUkGEtczuEs/dDyIwbbXuIgrFZPxbvMQ7fkJawtdG2wsyQ33VHGBuWoO4UcBAdhUCozwpR2vIzjWgN7yoI4hY9p+n7Go8N9FaSvZyDWtnF6D8zf2UvcMMieBVwXkp5QUpZBj4K3N88QEr5kJTS5im+gmpSv2dYzXfQRsERx95T826H2mjLqCdwnNna8yFkuAE6PwNzes4VbdS06J9L2tzWM3Bo1TT8TC4FHAjh4Bn0GH1mmFTZ8BG0teyTUCupA1oD45ZQdLyODNdQuVonW6y2FwTRUUDcMILgIHC16fd561o7/Bjwt02/R4UQp4UQXxFCvK3dm4QQ77HGnV5Z6a0iX1dt1PYR6GoS8TB1qaIYHME0G9HmRts6i/ucC+HgELKjJdrCsMxE79poSrV4jCS0hneM/wbzxMReOXbbz6RJS1Q71Rmy4aCJfc/0nGHUVqydnwmMOfaes4vzZtTWWjerMhhSocA3iCDQhhDiB4FTwH9uunxESnkK+H7gd4QQJ1q9V0r5ASnlKSnlqcnJ3hqjrnYK+wO1gKpFB81dHG4ChwXnupuUehsgOhAkHg46d3iX1q1DyMxH4OYhNBYP98bv2oeQQYtH0S70Eowtgp6buxiuIVtp6fgM4kmz/tfxSG8JZU6UiY7zN7OMGwUY+2QRdLUqwdhf6RRuCIJrQHOH6znr2jYIId4I/FvgrVLKxokppbxmfb8AfB64x4U5dcRqoUPoJRinp2+VEe5hAQ3EVeiqBjLdTGLH9eSdCjLL2a2pCRUrNQrlWmdqyNAqS/bactMw4iaTLzMy2KLEh43GGtLLLu65uUvD0arp4+i2hsC4FHVySFFDjvNRTP1MOsoE6FsEQ70KAkM/k84z6FOZCTcEwaPAzUKIY0KIMPBOYFv0jxDiHuB/ooTActP1MSFExPp5Angd8JwLc2oLKWXnRCAwLjzXM7XiYAMkoiEG2h1CQjhKaOr5ENKMWOlq0YDF75ZVopcG3HkGhhE3ndbQ4Bgg+tfcxWF5CbepoVK1TqHssAps3szP1HUf28/zpW4RdFJKDSlSp+hZEEgpq8BPAQ8CzwMPSCmfFUL8qhDCjgL6z8AQ8Bc7wkRvA04LIZ4EHgJ+Q0rpqSDYKKqql1qaRL8Kz+VTRuUluprEYMWxmzn6ej+EDBOButFz0D+Ht1sF52w44Hd76rRmWoJayyKYULSfZghsT89ASvctAicl2SOh3p6BiZ+poLMP+lOKOtR9SHdIKT8FfGrHtV9q+vmNbd73MHCXG3PQhZY2alh4zhVNwjTiptPiAUc9W5+/vqE9fhuc1sHvpgnZnz1+rOtn9i4IzEIvM4Uyh8ZjnQc5EMYL60Xt8dtgGoLcLRmr+bMKaRie7fqZzc7Wrv+bnSia+5lWc10EgYOS7D1bZQZ+JvvvtMyut2EnJkqp/blOsO8yi/VoCafNXXo4hEz46W6aEBjnQtihf474XYfObi2LoB8RH7WKOojcCr20Ycjv9hR1U1iFgRiE9Q7grainDoeQwzITju7BMJmsWKmRL9c67wObIu1X9JkDZ/fI4EB7ihfU59Wran16CF8QtEIkoUy8flXwNM3KzVe6WwQO+N1ytU7eCb9bSKv6++G41nA9YWzzu3rPwM4Sd1SB1DCzu+Fn0hHGJs/A0kYdCWPjyqkVhiIhIqEOMfsNYWzae9n7Z9Ao8dF1HxhWgY31so/Nc2m0FDrwnB7ad4Kga50h2OoX2g9tzm44bugj6EirwFY9+Yoe1dBTPXkH8d9CwEi70Esw3gC2VeZoExtaNLafqbtFYHYI9dTcxdDZrUp8dKmZbxo00UvUTYPa0ruHrVatXe7BQbkYx+XM3fYzQd/KTLjiI7iRoBUtAcbNu8fjEeYzekXetsHwENos19is1PQsAlAbbKR7IveWw7vE4aQhv+ug0NZYLNy+xAc4brnZ0yFk2l5Q5xkY8LvjTW1Ph6N6jU0aMPRxdI16gq1SJZpWWTwcJBwK9EUYZ/J2HkSbEhmNSU1A5qL2NJqtslaloSuVCvPz8xSLLRSsV/6Gsoqff17rb73nZRFCAcHzncZXp+A7H4BMCHJ6nwsQjUaZm5tjYEBvHe07QZAplIkOBIiFu9y6A0ffU/Nr5hMybHa9VXFRV5vTEwSNQ8jpJjZ2dneZvwN+d8wq9WEMh2F/bTO7bcSSqsdBaUOrfk6zn+PohB7N1kAhDRO3aA/X8jNFR0EEtYWxEEJRpE6tSnDg7NaxCMyooXKtTq5UJdFCGM/Pz5NIJDh69Oh2QSElXC9CYgYS3R3rAFzfIBEJMdfJsV4twXIdRg5rswZSStLpNPPz8xw71j3QAvYhNZTOaWhCYO5kGgpbVUEN+V0vQi/BQYkDu568w03sVg32ZsTGzf00fTiEGvSiTuRW8+d3QU+RT4YJcVr7IBCw6C3TwnMOncXBiLIENaBvlTlruZlpU9K8WCySTCZ3Wwt1i84L6OnWUkqqdUkw2MVStD+vrk8XCiFIJpOtrZZ2f0Z75DcIMoVyd00OHBWeq9QkG0VDftcwK1fL0QpNFUjNDiFHZr1hv2UtZzc49NM4nD+4V+LDhmHfXMdRN5VN1X/C2Eeguw/6UIHUXkOmJT66CmMzjr2ZIm2Hlt3EDAVBXUqklIS6NXISAUAYCYK2c+yAfScI0jox+OC8ebfpJjBNS+9WqMqGYT35WDhIJBQwP4RqFZV0ZBp6qSOMDUNgx+JhVp1YZYU0REa0G45rxeCDcWar48REB6GXhW6hlzYM81EcR885CDjoWErehmEYsuOcIENBULVqYnWdvxDqMw0FgSn2nSDI6MR/g/ECcqzNNWqwj2oNX9WlJSIjit/VPIQa/K7xIWSH/elpo1Kq7mraFoGhVeYoBLZgntkdCQWItWo43gxDei4WDhEdCJhHbjlM6NN7BuOwqVcvCXrovewk4EBXkIFx3TDPBUFNCYJQN0Fgf6YvCNxF1zr4Npw2UDfdxPkUDI5r9/rN5FXD8Y6hl2Dxu4YJTU6yKhuHkJ42ulGsUutW4sOGMb+7FXVjBIdhf13Nbwehf476KhjWGdKmtuzPNJn/UJhCuUaxYiqMDf1Mur4+w5abjkNgDQWBXSU31M1HYH9mkyC4dOkSJ0+e5Ad+4Ae47bbbePvb306h4CBisQn7KmqoVK2R69RwvBmmFoHTBWS6ASxtumXD8Z0wFARjMdVA3QhOHa1awri5xMGBrsPtCJLVQtksBLaQhmH9Xknazu5wHEJRY47duVVmGnqpKYw3M1CvaTWMaThbC2VmR/Sq6QLm1FChzGGdMhaGlYTj4SDhYEBrH//7v3qW5xassiy1svoKn9b6O9W6pFSpEQsHtykUtx8Y5pf/8R3bBwdDUN6uDJ05c4YPfehDvO51r+NHf/RH+b3f+z1+/ud/Xutvt8K+sgjsDWBmEWjyu06drQXT8scVvfmDJQj0zfqkk2QaQx+H/f/RdlSCAT1nm/WG9Jyhs1tbEDS6fJlQK06sMrM8CO3QS1Dzl3XYXNP6bEcce62iGut48QwGxxT1akCROnN4S0DfQWv7sbScuoGQEsRNOHToEK973esA+MEf/EG+/OUva//tVthXFkGj16+uJgTah1B0wGHzbsP473S+pGcSg+JcV85of/aYI0HgUeglOKDnHITANqpempWgPqJrcTho93h+Wa+1YgOmfqacEpR6PoImq0zDj+IoaGIzs/1vdUHDz6SzjwMBRb16EPm0TXPPXFKNrKbvaDu+GdfXN0nlytx5YLi7MAiEVEE+WbeiiHYLENMooV1/oqd332DQjsGHrWQa4xhqB/yuSdXLfKV7aQAbpj6CWJhsqUqpasDvGjqLtSNuwDj8cqyJltBGOaf62ho9A01nNzgqPNcpdLElDP1Mq4VK9xIfNgwjnxr0nMk+MOxnkS1VqdSkvkJkGH3miJ6rVbX9A6CcxaGA0LQILEquyU9w5coVHnnkEQD+9E//lNe//vVG0931J3p69w2GVZ3yxzZsZ6uXoXP1uorIcLMGezNiSfX59brWcPsgXTPxExTSKmtWM/TSyEdg2JPAUYkDQ4umVK2R1fUzgaPExGKlTqFsECXiIPSyY3e1Zjhs92hkWRoGHBitIXBEzxlnqNfNBEGtLvUihkB1G7T/hoVbb72V97///dx2221kMhl+4id+wmS2u7C/qCETkxgclbBdyRloc8U1Ze5pbgCt7mrNiE+ozy+uaWlbzWb99HBU728YdpVazZcJ64RegmrsgjAOgTWKGsqbHUKNqpcmh5BhCCwoeis2rrk9HQQc6NOLZpFPo7EwQiirQxsOs+uNBEHqrPZ0xk3XEKhDWrPVLChncdccAhsNi2DLUg+FQvzxH/+xyQw7/wk3PkQIcZ8Q4owQ4rwQ4r0tXo8IIf7cev2rQoijTa+9z7p+RgjxnW7Mpx1WdbMRbRhaBMbNuw210WxJo7taMwz75m6l1xveg6mTL6YReglqAxhW8FSRT949A9v/oG0RxJIq4a6mdzA6qvlkWnlU19EKinKy/4YGggHB6OCAQ4vAsMyKkTA2o4aypSrlqp4ljZTGFkG1Xu+eVWzDQZkJU/QsCIQQQeD9wFuA24F3CSFu3zHsx4CMlPIm4LeB37Teezuqx/EdwH3A71mf5wlWC5rZiDYMHX3j8QGz5i724jRsOK4vCEz5XcsiMD1IDcP+tDcwOHgGhn4a06bvupndNgw1akfOVuNeBAbPIBxTDW8Mi/+ZPQNDP5NJwAEYU6TjDYpU8x5kHZDm1JBODgFsfW5NCYKjR4/yzDPPaP8trT/hwme8CjgvpbwgpSwDHwXu3zHmfuAj1s8fA75DKJXwfuCjUsqSlPIicN76PE+gHXJmw0EDeKPm3f3QhED7IHUU+ldYNT6EtLVp8D780mH4q5FFAN6FITvwM2VMqCFwFHRgLIwjwxDqUlLaQqMCr46vD7ZCYItrWsON627ZmnpQv85QzYgaugEsAuAgcLXp93nrWssxVrP7dSCp+V4AhBDvEUKcFkKcXlnR65i0EyODYW6d0WssDagDrrimbdYnTbU5wxLUjjQhMOB3HUZ8GIZemlsEHhaeK6SVMy4yrDU8YyqMm8uBa2ArMVHT12T7mTR9BFJKB8/AkJ4zdbYar6EK4WCAuI6fCbx3eDvNKtYVBEKoCMaXuCDoC6SUH5BSnpJSnpqcnHT0Gf/xe+/i937gFfpvaCwgM45dW5NwaBGY+wj0NsBAMMBwNKS/Acp5qG468BEYNF1xwO9uFKtUapr8rmHD8UbVS53QSzC2yhKREANBwWqbMsi7YOhozdmhl7ohyGBeBdbYIjANOCgxFh/Qj533uvif7cR1u+BcMzyuN+SGILgGHGr6fc661nKMECIEjABpzffuHQw3sbE2l0+r+usDehE6xvz0QEyVODCqFRPRj/gwFGSVWp2NYrV7V6lm2BaBpt/FOJfAuF+0QeglNIXA6ikTW5mtmmvIYWcv7cgz+7O97M1hHHCgWcbchqFC1LAIdNdQwyLQs1BqlpKi7SyGG0IQPArcLIQ4JoQIo5y/n9wx5pPAu62f3w78vVSr5JPAO62oomPAzcDXXJiTOzA0640zW702iRu9l/U59rGYQcSHw6qXRtpofEJlVRbXtYaPN8x6XWFmXnnUyM80OGb9HRN6y6DwnKGPwyihz4apnyamenPkdHsvmwrjgmYZcxuG+SjGFKnDEtTazmL7s3eUmXATPQsCi/P/KeBB4HngASnls0KIXxVCvNUa9iEgKYQ4D/wc8F7rvc8CDwDPAX8H/KSU0ru7NYXhAjKO+CiYRXvYYX9G6eSG/K5RVqVhHXyjWk82vI66cRj+qo1gSAkDrxITjZ+BoVUJVgjsBlT15jTWh2fgyCLQfAYDwQAjgwOGgsDi8TXgiBoKemsRuJJQJqX8FPCpHdd+qennIvB9bd7768CvuzEP12HoZBqKhLQrFzY+1yTixjT0Eow59rFYmGeubegNdtrZy6lZnzzRdbixIHAQeqldZ8iGA4f31YxmWWGHyVhmkVtNHPtw9368zWUmjiS79F4uF6BS8KbgnI1wDEKD3gUd2DkEmgqasbMYFO1Ur4KUvPd97+PQoUP85E/+JAC/8iu/wtDQUE/VR/dVZrEx7GQag+bdRhp1Pg2TJ7WnoywCA1oF1AbLXNIePt7U5aur5WFYI8bYxwHm/G5TKequsKteGmbl3nN4VHs8YNFzhrkQ2vTiKgzEtbNaHT2DZoVIQxAYceyG9GK1Vmd909BHAFaVAEOKtNv8//a9sPi0CpiQdfUcNDBarTFUl4hwi+N35i54y2/svh4IARJknXe84x387M/+bEMQPPDAAzz44INaf7sdbpiooT2BbdZ7ldBkahLrdvZqhoM4/LJuLkQhrczhyIjWZxvH4IOxWd/IhdA5SJ1UvTTVRsHKRzErM6Fd/M+BjyMUECQiBjqgcS6EnR2t4acx9jMZ9FJoRmzccB9H9H190rAEtdFoC025BPfccw/Ly8ssLCzw5JNPMjY2xqFDhzq/vwt8i6AbDJt3J4c0LYJGw3EPTWLYXuJAozBcM78b73ZYFFJqg+lWvcx5bxE0QmB1tFFDWmWjaFjiw0ZsHOb1GpbAVvRZJl9hZqQL7+yEXzf2MzmzyrSCDrwOobZhTM8N8PS1LvO3Nfel55RFNn5M67MXVnLUJdw0NaQ9n+1JZRG+7/u+j4997GMsLi7yjne8Q/9z2sAXBN3goPDcpXS++0DDQ8i5SdxUbygx3XX4eFN28aFuHaCM+fUSw9EQA7qhl6C6fAUj3vC7fTuEJrZCYDUO4K3s4hIzI11Ci/MpiOvn1Rg7u8FYEAxZuRBaCpGhs9su0W1kVYK6h9UL2sPH4xEy+YoeRWpcZ0gSNtkDsCu7+B3veAc//uM/TiqV4gtf+ILZZ7X6+J4/4RsdDhKatGgJww2wvllBSoeaUPPf64KGRaDL7xrw6+l8meSQQQ4BqIPTgTDWEwSGnb2cRNyAegb1ioq80YBR4TkHoZfa/SxsNEJg9XMhxmKaTY4MFaJGm02T8FGwLHszi6Bcq3cPgZVShTdrlpcAwxLUNnYIgjvuuINsNsvBgweZne3ut+n68T1/wjc6DJtaJONh8jrNuw3jvx05+Zo/XzcpzqQCqYMS1GMmWcU2HITAah2i/Yi4AfMyEyaRTwWzxkaO6MXggOo5Yeor01ImUsrPpNtdzbIIHClE5SxU9RL1xnTzUQxzCKSUqgS1SQ4BtCxF/fTTT/PQQw+ZfU67j3flU76RYSdkaVcu1NTmGhUXdbVRtSAdmcSgH4dvUnjOtA5+vmyWVWzDQfilXsSKadN3gw53zTAsB66dmNgIvTQoQV2omB+iYFxmwsgiiCW1/Uxpx8/ADoHVfAZDmpaxoSCoS4mU0iyrGKwcBeFZLoEvCLqhkdm6pjVcW5traKO6pXcNm+rYMBQEw4MhggHR/SCt11TUjZeVR22YHkJWCG/XEgeFlFF3tUbUkzEtYWaVjVil0rsrE2ZNdWp1yZqTyDNwVGbCC3px1SrxYeRnAseF57qW+jDNKq45yCEARZHauQQewBcE3RAzM+u1C1bZoZeaJrHjQ2jQTBOy+V09i0YaVb3MFMrm3C5g2uVrPKYZAuugl0IkFGBwwLBlhqEwDgQEY7EBvTXU/PldsFYoU5cOrEr7bxgWnvOCXkw7ViacUaRdQ2Adlpcwpobsv+ELgj1C3OkC6qJJFAxN4pxDkzgUVnH+hqFz3QWBeehlpSadb2KjLl8GVpmBRZPOqUPIKPQSjH0EYPs5NNZQ8+d3QSPqydRhD8b5KGPxMGublUYWbVuY+jhyDrLrwXGpklbCbJul6XUJ6mYYCALtgn/2R5vPZp/B1CLQ5XcdxH8noiHCIQePzEm7x26aUN7hIeRkE8fNOHZtQeAo4sbB/BtVYF1OTDT0cThK6LNhryHNA2Y8NoCUGl2+DIVxpuDA2Q3GVWDbhcBGo1HS6fTWQdsoQW1WZ8hLQSClJJ1OE41q9h3HzyPojga3qLeJh6Oa/G7ePPRywokmB45CYM8t5zoPMm6q4zDaA7ab9Rq5ENohsIUUHHi59jTSTiJuwFEV2GQ8wvOLXcJNDaOebOXEmTCegGpROafD3UspNJcDbxsybJf4MKSG7j40qj2+ATsE1qBcTCuH99zcHPPz8zSaY21mVF+O9TNan5stVljfrBLciBIwtSw3V6G8Cenu74tGo8zNzWl/tC8IuqFR4sCE39XR5tIwpV9naDVfcraBQd1D9rr28PG4Br9rbBE4LA0ADkocaJSZkNKYn87kyxw1LThnI+4gH8VlP5MtjI39TLC91IeGINAqM2ELRhM/k1NhHAyp/1OPlXgHBgY4dqwpg/hjPwoLj8PPPK71mf/xU8/z4Yev8cKv3WdOMf79r8OX/gv8u5S2BaILnxrqhlAEwgnjXILujj5zfronQWBYbyhTKFPvxO/aG8rWtLqgN4vAMOJDpzlNKauSvAyjnnp7BmaH0FqhQrVTpzXDEh+OQy/BefG/TvvA1M+06bDEhw0HiYldo+cMKwjbVqWxEAAavZc318zf2wW+INCB29pcI/SyD9ES4MhHUJcqm7kt8imlYZmGXjrNI7D/pga22j1qHEKa2mipWiNXqpqXZ7BhWIHU1toznbrFGfqZ0jmHoZdgnAuh5acxtCrTvVg0YAljg5LsWpaxGcXr2KIBY2FsAl8Q6MC0Z+tQF0GwuWbccDyTN+zK1Iz4hCqVW9arcT+uw7E7iPYYHAgyqNtdrRmGyUBaIbDGyWQOSxvYcGCVQbeD1LCfRS9ryIt2j4Z+pkZ2vWNhbPYM9Cx7sy6Djv1MAEdfB9//gFYpcFP0JAiEEONCiM8IIc5Z33fxBEKIu4UQjwghnhVCPCWEeEfTax8WQlwUQjxhfd3dy3w8g4MyE+lch9A/w/jvLZO4B2dx89/tgga10k2b6xet0ihx4GKZibyps9tBU51mxO0uX3olDuz/VbpTCKnxIVTqwao0W0PRgSCxcLC7IAN9iyDXg1UJjizj9c0O9JyUxhRvT/tg+ADc8p0QSTh7fwf0ahG8F/iclPJm4HPW7ztRAH5YSnkHcB/wO0KI0abXf0FKebf19USP8/EGxgWrwlbcfJsFZMiNppxWXLTh1NnaUaN2UnDO4fzB2Kzvyu82noFuZncPETfgoMyERqmSftQZshEdUY5pU45dh54bNHwGjq0aq6S8bgis9b9aa0eRlrJQKxsHHDh+Bh6iV0FwP/AR6+ePAG/bOUBKeVZKec76eQFYBvTr5r4UELcOIc0FlOymUfer/LENw6xKLWeracSN0/hvG4bO1rFuZr3D8sfOn4FZGHJXaqheM86DUAEHDrVpIRwJ4470Yj6lgg00K3f2lAcBTVVgs1rDuz4DwzVUqtbI9uJn8hC9CoJpKaUdl7gIdAzyFkK8CggDLzZd/nWLMvptIUTbVSqEeI8Q4rQQ4nQjhrdfiE0oya+9gNRttD2ITJ1ktkncM7+r6eiLdSmTUa+bWwQ5B3Xwm+F2iYN8SvU5COs1B8m4JYy1O60pJ3zbxMTNNUBq0xL1uirxMdGzVWZGrXS1aAxplVg4SNS0xIcNh9nFXQWB5j2sFXr0M3mIroJACPFZIcQzLb7ubx4nVapdW5VZCDEL/G/gR6SUNmfyPuAk8EpgHPjFdu+XUn5ASnlKSnlqcrLPBoVhUpn+AjItf9wfH8FgOEh0IND+IC2tq0J8/eJGwRE917HEga1Na4bxrebLCAGjjn0EZiGwoWCA0ViHUh+G9OLaZoW6k34WzXDg8O7qI+gXtQVNz8As8skty76R0PcStAi62mRSyje2e00IsSSEmJVSXrcO+uU244aBvwH+rZTyK02fbVsTJSHEHwI/bzT7fqFRZiIN48e7Du9aeK6QVrkJIb2D3XY8GzcUsREdBREwC4GNhdsnAxk6+TbLNTYrtd40oeYSBxqH93g83Chx0DKz1bTXb6HMqFUV1BEMcyGgy0HaoCV0D6EeqS37by2/oD28aynqQhqSJ7Q/z3H1WhsOC891t+zNeop8I/oIPgm82/r53cAndg4QQoSBjwN/JKX82I7XZq3vAuVfeKbH+XgDp4Xn2kUOOQg5S0RCREIOTeJAwJzfHepQ9MxQG3XcXrAZsSTUSiqdXwNd/RwOe/06xuAoIIwEgQpfbPMMTMtL9GpVgnEuxHh8oHOTJgfO7p6eQSMMWe8ZjMa69F423gffuILgN4A3CSHOAW+0fkcIcUoI8UFrzD8FvgX4Zy3CRP9ECPE08DQwAfyHHufjDQwLz43FwgjRgRrKm2+AniJuQPW1NbAIxmJhVtslMzkuONfDIWRIz3Ut/ucg/LUnQRYIqoPIrcREQ366QS/2so7ik4pWqbc52HfAtsRa3kO9btFzfaYXQVsQREJBEpFQe4d3Id1fP5OH6KnWkJQyDXxHi+ungX9u/fzHwB+3ef8bevn7fYPhIRQMCEYHO9STL6RhaEr7z/e8AcC48NzEUISLqTbat3HBORc2QLOfY+xo1+FdE5ocWATHJrrX2OkI4zITER67nGn9okNttCdhFp8ApDrAh7r76Zp9ZQdGB7e/WFxTfiajEOQe8iBAxd8HBswUok7C2PZxaPqZ0r36mTyEn1msg3AcQoPuanMGmlAqV+pNmwbLItCPtlJJce5EPTnu9dsMxyUOWlg11bJK7jKyyhy2eGyGYYZ6Mh4mU6i0rvlUWFWa6IBeqeEtP5MLzlbNdWRHKKVaUaSGCX2FcpVipd7bPmiEwJqFIXfexwZtQvM9+pk8hC8IdGFYsCoZj3R2MhksoJ5pCTDPjh6KsFmpUSi3qH9u6Oy2N1Jv/K7TomctDiHDaA879LJ3QWCW2ToeD1Ory9Y1nwzzOBy3eGxGzEwQ2P6IlgpFwczRupVV7IJlbFhmomPkVj+pLQ/hCwJdOKjp33IBlQuq7o9hi0dXfATFdaUNa6Ajx24oyNL5MgNBwXC0ByayEYevdwhFQkGGIqHWFoGhIMgWq9Tq0nmNGxvxCaM11DH6zLTgnFvKBOgHTQxtUUO7YGgRuBZxE08aWcYdI58cCGNfENzoMNSo2xaesxdhXC8Xwm7x6IqPAPTLTHQ8hBy0F4w5LL1rIzpizO+2bfdoWHm056qXNmxaot6htHQTOuajGD6DdK6HfhY27DVrUAU2HAw0SqRsg0MfR09WJVgOb7PIp3S+3Lr1Y2G1v3kQHsIXBLowTGhKWrVudiU0Nfh1PUFgc7uuWASgb9Y3Ij7a8LsOarD3BCGMI59aNRYBjEMve656aSM2oRykpXWt4R37X+dWIN7ngIPBMUAYdflKDoVbNwgyzEVZdYsaik8ZWmURStU6hfKOSKlqWT1HE2rIDXrRI/iCQBemFkFTQtM2NCyCPoZeNv89w/DLVEt+17AGuxvUFljUir5ZPzHUxuHdKEHdp6qXNhrOVt3if21KlUip/g/GIcg9zj8QtChS/WfQVhgXUo78TD2XZ4hPqECBSlFreFuKdNNeQ3oUaU/d1foAXxDoIpZU/VpNa/rv3ASG1JArYX/Nf09TG2pQQzs3gIMWj0ob7fEQAhVyaxT5FGkdsVJIAUK7u1rDInCa2W3DMKGp4fDe+QyK66p4muYaqtelOwEH4CjooGVJ9rxZZrftZ0pEeuyua2gZTyTUul3ZeQ+GkXMbRVVKvmer0iP4gkAXxhp1G20ub1Xh6GciEBgXPYuFQwwOBHfTEuWcyvA15KfdOYTMqKGJhPLT7Aq/LKRVpq9h1UtXwkdBew3ZCU2715AZvehKnSEbps+gk0VgFHFTct7isRmmgqAR+bRjHxj6OFzJpfEQviDQhVuVC/MpFf8djml9jis1YkDVGwqEzM36ndqoYbRHpVZno1h1RxOKTyhBql0OPEK1Ltko7ogcMvRxpLKq6mUs3KM2aiiMoU3Qgf0MNZK6oMem9TvhIHqudeSZacG5ijtWpVPLeOczMMzstvfxRK/0nEfwBYEuYob8brsFlF/R1uTs9w/1UmfIRiBgXCtmYihMqt0G0NzEGbe4XVD/t2pRWSUaSLZLaDIs8ZHOl9zZwI1DqGVtxpZoGYZsSi+65eOw/6YJPdcuH8WBReAatQUGQRPWGsr2Rg2l3Ar68Ai+INCFITVka8C7+F1DQeBKnSEbxnHskd3UkKkm5JaPA8zNeuvw3uXwzi8bPYNUrtRbHX8bA1GIjKiIH0207JtrCxLNe3CVlohPqPIQtTZ1qHagpa/J9jOZVH/tteCcDcM1FAkFSURb0HO5ZdWxTbO72op1/5O+RXCDw9CsD4cCJKKh3QdpPmVmEeRcjDQwFAQdqSHNTezuIWRm1tuCYNc95JaNaj2lsi5E3NgYmjSyCFRzlzbaqHarU5f8TGDcV6ERddN8kJY2lLPbMATZFWWiUS7GJPqsRdBBfln9LwJ6R2gqW0II30dw48NOaDJtYt9KkzDt9evW4omZhV8mrfDLbck0DgvO7YVF0JIaqpaVRmsQg68sApcEQXzKyCKwfQTbnkF+xWrxqBfFZFulrvhpDCvxtsxHMaRVytU62WLVnUNUCEsYm1Gku5UJszyOVK7EWCxMqJcSHx7ipTmrlyLsglW9lJmo162MUBNqqOQOtwtWVqV+UtxEPEK5VidXauJ38ykIRZVmpQHXnN1gLAjGYmECYkfEh6GjtVaXrBbKTLpKz5lRQ5Wa3PEMTJPJSgxHQ4RDLmx3U2HcKh/FkF50vaGLcQHGNhaB5hoCJQhcU+g8gC8ITGBYeG48HtkuCDYzIOvagkBKFf/tWo/TeNIomabRoWnnJjZo8ZjKlQkGhHtRQ6C9iYMBwXg83OBn1Xttfl3vIFXa+FY8ec8YmjJ0Freo6W9IL6bcSCaz4dAq27aGDOnFlazLETfGDu9Wlr2ZME7nyi/ZiCHoURAIIcaFEJ8RQpyzvrfM0BFC1Jqa0nyy6foxIcRXhRDnhRB/bnUze+nC0CLYRQ0ZZhXbdYZc0ySGprfPowu2Ip+atCFDfn0lqzShgBuld0MR5Ww1egY7EppsWkbzHhrRHq5ZZVNKIdB1trbi2A3pxVU3/Uy2FpzTE2Z2PkpLq0zTIrCfwaRbwthB0ESmUKZas2pESenIInBNmfAAvVoE7wU+J6W8Gfic9XsrbEop77a+3tp0/TeB35ZS3gRkgB/rcT7ewkHhuUwzv2trgpqHkOtJKLYg0NzELaNucktbn6OBVK7k3gYG9Qw05w8ttDnDiJtUI/7b5YNUUxhvtT3doVCYRp65tYaioxAMq3WgiYlEeDu10tgHeuvItgimXBMElkWgmY8yOaTKxWTsjn2lrApjNvIRlN1bQx6gV0FwP/AR6+ePoPoOa8HqU/wGwO5jbPT+PYGDwnPVumRj0+J3DeO/txKBXKQlQHsT2xtvOduDReCmoxUcxbFvO4RyZsLYpjRc0+bsw0NTmO1KTLSd3QbPIO1mCLIQ6gA3eAZTiej2Eg25ZRV8odlUZ8XtZKz4pIpaKq5pDU82FCLrHvJmVmWxUiNXqn7jUkPAtJTyuvXzItBOxEeFEKeFEF8RQrzNupYE1qSUthdsHjjY43y8RXxCVRzUrOnf4NhtasW48qiLETfQdAjpCQKV0r+lkVGvGTsqV7IuWwS9RnzkV2Agru3sTrl9CNmHhzE9Z92DYUKfa011mjE0ZWQRTA5FttYQGFuVK9kSQ5EQg+EekyptmGYX7/SV5cysyi0fxw1sEQghPiuEeKbF1/3N46TiP9rZWkeklKeA7wd+RwhxwnSiQoj3WMLk9MqKvjbiKnotM5FfARHQLnZmUzLuJZSZ8buhYIBkPLy1iQurqoyy5iaWUnpADZlZBBNDEXKlKsWKVUY4Z8btruRKhIOB3prqNMPwGcTCIaIDga3wS0Orcm2zQq0u3fNxgHr+BvTcZGKnIFg2pBfL7q8hex4asK3BLYXOzKp0XZnwAF0FgZTyjVLKO1t8fQJYEkLMAljfW/5npZTXrO8XgM8D9wBpYFQIYe+wOeBah3l8QEp5Skp5anJSfyO7il4Lz+WWlTAJ6Gk2y9kiQri4gEJhlQlpos0lolub2H6f5gZY36xQqUn3qaFCGmotWmi2wFb4YtMmNuF2s4pW6bnYmY2GRWDg52hue2ro41jOqgixqWE3BYGhRZCIkClUKFctZ2tuyTDgoOhuRq7hM7ALz6V2WQS6gsCiF29kQdAFnwTebf38buATOwcIIcaEEBHr5wngdcBzlgXxEPD2Tu9/ScEwmWZXq77cEgzNaP+55WyJ8Vi4tz6zOzE0bXQITSYiW/xuQxCYOfncpYamAam/iXc6vPMpQ37dZR9HOK6oKZOksuZ8lKyZMG48A1eFsdXcRVMYT+7UqA0tgpVsiYmEm9SWtQezesJseDDEQFBsKUT5FUDod1ezLYJv4Kih3wDeJIQ4B7zR+h0hxCkhxAetMbcBp4UQT6IO/t+QUj5nvfaLwM8JIc6jfAYf6nE+3sJhev3WJl6EhP4GWN5wmVYBS5szEARDka2CW4aOVluAuHoIJexNvKg13P7/LW9YuRO5Paoz1AzDMhPbBEHOum9NhWJ5w4q4GdZzzGphaAqQ2vvAfv4r2RKUcqpooGEIsqtraHBMVeLN6a0hIQRTiWjDumpY9pplzLdCkF+6PoKeiE8pZRr4jhbXTwP/3Pr5YeCuNu+/ALyqlzn0FYYWQXQgSCwcbHIyLcH0ndp/biVb9EAQTMP817SH2/yulBLh2CLwQJvTpCamrQNwOVtSGmwhbVxn6LaZYeNpdkTcTBgn42HOL1sVV7NLKpdCs4z5stuhl9AUhrykpdjYa3glW4LY6vbP6IJStcZGseruPggE1N/XtAhgh58jv2K2hnJlEpEQ0QGXnN0ewM8sNsHgmHL2GrasXM2XVMRNbtnIIljJlphKuKjJwZZFoBtDnVBlJtY3K1sRN5EhrfemGhUXXbwH+/+naRFMDKnIp+VsydJgpVFmdzpfci9814Zhp7VdFoGJVZktEg8Hiffa2asZhvko2wSBoVXZWENeKESaFgEoQbrUsCqXjKzKlZd4Mhn4gsAMgYBytjrJLi6krYgbPZNeSslKruSukw/UBqwUtGv6b9/Epk4+K+Jm0MVDyDAEdivyqWgc7ZEpKGf3tNvPID5pZBGMD4XZrNTYLNeUFmvAry9nS+7SQmCcj2JHvTXWEBhbla47WhMzRhbB1HBkK5/GQXb9S7X8tA1fEJjCMHSuoc3ZGqymNmcfQq6a9GCuzQ3tFASGTj43I25ART7FktoWAaiEpqWNUpOjVe8ebA1w2u2DNDGrrErNfJRkcz5KbnHLT6IBTw4hQ0EQCQUZjQ0on1HDItjDgAP77xtEPk0noqwVKpQqVYsaMvH1FZkecXkNuQxfEJhieBayC9rDJ+xkmoYmpOnksxxTnjiLQT+7eLipebdpHX+3cwhsDM0YbWKlzRUha+U+Jma13rclCDzQRkH7HrY5vA0tgpVsiUm35x+Oq3arBvTWZPM+EAH9Xgpu1xmykZhRwliz5pO9D1LpFWVRawpjKSWLG0WmfWroGwyJGSNtdGYkSipXorZhH0Km9VXcNut74XedWAQebIDEtKFFEFHRMw1BYBhx4/YzsAWR5j3YFkk6nYLqppFFsLxRdN+qBEe5BI01FJ/UzqWx94GrCXFgvA/sNbC2dFVd0FQmNopVipW6+1aly/AFgSkSs2ox12taw6eGo9QlFNJWrpxp2J/bm9iw1k0iEiISCpBez6qqmSaC4KViESSUMK5vXFeaaEhvTrZF4LqfphECq2dZzliHSC41ry5orqF8qUq+XHNfkIGj7OLlrLlVuZItMRobcKeXQjMaVplZGHIhdUVdGD6g9b5lr9aQy/AFgSkSs6qngOYmsDdxMbNgVGhr2StuNDaueq0axFBPJiIU18wSmaq1OulcyRttNGHxu/W61vDp4Qh1CZXMvLYmB7CULTIWGyAScjnszz5ENC2C8XiYgaBgc9USHMZWpUcWgYFVZlND0tCqXHY7q9iGvY41Hca2Rl/K2M9ATxgvWQqdbxF8o6Fh1l/vPM6CLQjqG4uGWcUehP2BMskdxFDX160NoOvky5WoS5gZGXQyy84YmoF6FTZXtYZPJuxncN1MEGyUvNnAg+Oq7anmGrITmhr0orafySNlAiBxwEwQJCJsVmrI7KKRIFhcLzI76tEaAm2FKBkPEwyIrX1g7GfyBcE3FoYN+d0RtQlFXi/5xoYnYX82hg/Axrz28KlEhEDu+tZ7NXB9XW2AWS+iJQxzCWyzPGAYcbO8UfRmAwcCah4beoIAlK+pkdCnuY48qTNkY/gAlLNQ3NAaPj0cJUgNkVvWXkOg1tGMF/MfmgKEtkIUCAgmhsIE84uqJ8OAnnBaynoUcOAyfEFgioZFoMfvJuMRggFBeHPZyCJwvXxzM4YPwIZ+5NPsyCCRgnXojsxpvWdx3UNNyFCbsw+hcDFldAgpi8CjZ5CY0bYIQFmW4c1lGIhBRC/T2TNnN2z9HzXX0cxIlEnWELKm/QwqtToruZI3VmVwQPmLjJLKokQ3zQTZ8kaJRDRELOyyZe8yfEFgivik4tg1tdFgQDA1FCZeThtnFXsnCA7C+jXt7OLZkShjtRVkKKpdQnuxLxaBZvjlUEQdQkhti6BWVwl9npn0iVmzyKfhCPFyStEqmnkZy9kSA0HBWGzA6SzboyEI2hYM3obZkSizwqLyhvXajqjSJh6tITBOKpsejhAvrxhZlYvrHlmVLsMXBKawOXYDs/54osqALBtlFV9f32TWS2qokleN7DUwY23iSnxG+xBa3CgSCQUY9eIQMrQIwqEANw1m1S8JPW0unStRq0vv6DlDQTAzHGW8nqEWN0tkmkpE3U3os2FoEUwPR5lpCAIzenHGK0EwNG1klU0moozVUtprCBQ19FKnhcAXBM5gaNbfOmiVcxjWczBlChWKlToHvHCSgfEmPjA6yIxYpRDRP4SurxcVr+3FIRSOKZ7WgN66xX4GptEeXllliRnV7a6c1xo+MxJlSmQoRPRr3Fxb2+TAqIeCDLSfQXQgyInIuvpF0yKwrcoZr4TxyEGjNTQ9FCIp1wyFcYlpL6g5l+ELAicw1OZORCxNaOSw1viFtU0A7zaxvRE1zfqZ4SizrLI2oH8ILa0XvdvAACOHYF3f4X00Ylk/mtqo59EehkllU0MRDooUG2H9Q2hhfdM7ZSIUUTSpQZb98cg6JRHRpxc3PKQXQa2h/DJUilrDjw0WCIk665r7oF6XLGeL3lmVLsIXBE5gWGZiLqDqthcG9bTRLUHw0rAIphNhpsUqy+iVBQC4vrHp3QYG5bQ2EASHQutUCG6VEu+CrWgPr4SxWRjygUiBqKiwEtTL46jXpQq99MLRasMw6GAumGFFJPXpxfVNogMBRgY9oBdhK/BBUyE6PKCUiRR6gixTKFOpSW+inlyGLwicIDGjsmw1NYkZmaIsgyzWR7TGb4VeerSJDc36cGmVsKixUB/XGi+lZGm95G2hrZE5WL+qPXwmkGFZjlKo6iWhLW2UrDahHjUTaTwDPUEwXVdOzQVNYZzKlajUJAe9sipBWZYm1AppFup6hyiofTA7MugNvQhbgkBToZgNZACYr49qjb9RksmgR0EghBgXQnxGCHHO+r7rKQshvl0I8UTTV1EI8TbrtQ8LIS42vXZ3L/PpG2xnkaZVMF5dZlGOs5jVqza5sLZJOBTwrqNRKKxKTWhqQvZGuVjRE2Sr+TLlWt07ZzeoTVxc145jT9bTrMhRFtb0hPe1zCYzw1FCbrYJbUZDEOg9g2heCYzLFT1hfM1rqxIsi0BzDQHj1RWu1sYolPVaXKqIGw+1aUOLIFlXFO/lkl74rm3Ze+bsdhG9rvL3Ap+TUt4MfM76fRuklA9JKe+WUt4NvAEoAJ9uGvIL9utSyid6nE9/MHpIfV/T00iHSossMNFwfnXDwnqR2ZEogYBHmhCYmfXWuHObehtgK9rDw0PIcBMPl64zLycaB2Q3zGcKzI15OP/osCo5omvVWML4THFUa7jnViWoNbSZgXKh+9h6jXg5xXWZbMytGxY3vKa2LF+ZpkUwkLtGlSDnCnpzms+o/8uhcb1ucnuJXgXB/cBHrJ8/Aryty/i3A38rpdRYOS9hjFpO37UrWsMj+QWuySTXMnqH0MLaJge83ABgZtZb457N6XUmW/Q67A+Uow/0NnG9TiS/wLycbGhp3TCf2WRuzOMNPHoEMpf1xq7PUxRRzq7rJSbZ93nQU4vAOkh1/Bz5FQKyqixjDUFQr0uWNorerqFQRIWQ6grjtcusBKaYX9crXT2fUT6Ol3KvYhu9CoJpKaW9ChaBbiEN7wT+bMe1XxdCPCWE+G0hRFs7UAjxHiHEaSHE6ZUV/TronmB4TiWVrWls4lqVQPY6awPTXM3oyb+FtU1mveR2wcys37hGTQxwpRQjW+y+CTyP9oAmfldjE+cWEbUy15jSEsbVWp3FjaK3FgEohUJTmWD9KhuRGa5qCrJra5vEw0F3u8PthElSmTXmuhzXEsbpvO1o9XgfmAQdZC6zFpnlmuY+tpUJz3wcLqKrIBBCfFYI8UyLr/ubx0kpJdA2VVUIMYtqYv9g0+X3ASeBVwLjwC+2e7+U8gNSylNSylOTk/phjJ4gGFLakM4mzi2CrFGOH+Dqqt4htLRR9FaTA7WJi+tQ0mhZubFAcXAaSUBLm5vPbDIQFN70IrCRmFHCWGcTW1p3fvCg1iF0fb1IrS69FwRjR9Ua0snwXr9KKXaAbLHKeqG7ML6+poq1eXoINagVDUFgjVmUSa01ZD8nT5UJMBMEa5fZjM+xsFZEajyz+TWP6UUX0VUQSCnfKKW8s8XXJ4Al64C3D/pOtZn/KfBxKWVjFUspr0uFEvCHwKt6u50+YkzTrLcX2cgcV1a7axJLWVW101NuFJroLY17WLtCzXKQL2hs4iureebGYgS99HEEglapDI1NbAns2shh5jUEwbxlNXhPDR1WjWZ0On2tzzesIB3L0tMcAhsjc4DQW0PWcyoOzmitocvWXjmSjPcyw+6w81G6HezlPORXqI8cZrNSI6MhjJVF8A0iCLrgk8C7rZ/fDXyiw9h3sYMWahIiAuVfeKbH+fQPuma95VCOThzh+vomlVrn8MXrXieT2Rg/pr6vXuw+NnOR0MQJAK5qCLPL6QKH++Eg09XmrINqYPywlkVgO/m8p4aOqO/d1lFFCYtwUo3XeQbKz+TxGgpF1DNYvdB97OoFiIwwND6tNf8raZVx7fk6GplTrSc3M53HWft4IKn2Tbd1lC1WWCtUvFcmXEKvguA3gDcJIc4Bb7R+RwhxSgjxQXuQEOIocAj4wo73/4kQ4mngaWAC+A89zqd/GD2inGTVUudxFoc9Mn2culQmeydc64eTD2D8uPrebROXcpBbIjp9M9GBAJdSnUsiSCm5ki5wJNkvQaDhI8hchqEZpsZHWbRon06Yz2wiRB+tssylzuMsZ/3wjDqEulmWxUqNVK7svUUAit7SVCYYP8bRiTgXu6whUMrEVCLCYNjlpkA70aC3uqwjS5kYmlb7Zr6Lr2nLqtwHFoGUMi2l/A4p5c0WhbRqXT8tpfznTeMuSSkPSinrO97/BinlXRbV9INSSg3C+iWC0cOA7B5Cuj4Pg2PMTKlEoG5mva0teb6JB8dUvZ5Ml01svR5IHufIeJxL6c7zzxQqZEvV/lkEGwvd24auXYaxIxwcG6RqRaN0wryVQ+B6e8Sd0I0+sw6pwYkjjAwOdF1DfVMmQCkUuhbB+HGOJuMsrG9SqnZ+ZpdX+6hMQPd9bNHAY3M3Ad0tgr7Riy7Bzyx2ijHbrO/Cj2YuwujhxsHYzSy+kMozMxx1vzNZK+hsYlvbGzvG0YkYl9KdtbnL1uuec7ugtNF6tftBunYZRg83hGu3XALPcwhsRIZUTfyua+iS+j56mEPjg12DDi6sqGdwbLIPz2D8GBRSUMq2H1OrqGc0fpyjEzGkpOs9XEkXODzej/nblvGLncetXYbQIGOTc0QHAhoWQZ/oRZfgCwKn0HW2ps7DxC3MjgwSCoiuZv2FlTzH+7GBwRIEXSwCW1CMH+NoMs6VdKEjtXKl4eTrgyY0cYv6nj7ffkytqiJWRo9w1BJO3aiJvuQQ2Bg90l2Qpc5BaBCG5zg0FutqEVxMKcP6xIRe3kdPaBykHdbR+lUlsMePNxSEThRjsVJjcaPYnzU0OKqK56XOdR6XuQSjhxGBAEeT8cb/uB3mM5sMDgRviBwC8AWBcyRmVd/ZTpu4XID1KzBxC8GA4MDoIFc7aBJSSi6s5Dg20S9BcExt0mqH0herF1ShtugIR5JxyrU619fb38NlizrqCzU0cbP6njrbfszGNZA1GDvCobFBwsEALy6338R9yyGwMXq4e/RZ6iwkb4JAgEPjMeYzm9Q7COMLK3mS8TAjXvSC2IkxO+igg2XZUCaOc8wWBB0sy6v9VCZAKRSdlAloWJUAN00N8eJKN2VCWZU3Qg4B+ILAOQJBxS92cvTZi8s6sA6PxzpSQ6v5MhvFKscn+6DJgdLmZL2zo2z1QiPC6OiE2piXO/gJLqcLTA9HiA547OQDRasMjnXW5myLbfQwoWCAYxNxzncQBJdXlcXTF2oLFMW4flVZLu2QOtdYQ4fGBilXVQvHduivVWkJgk6+JttaGD/GaGyA4Wio6xqCPikToIRsJ2VCSshcadDBJyaHuJopUKy093NcSvUpcs4l+IKgF0zeCssvtH/dXlxJaxOPx7iczrdNRrlgmcvH+2UR6GhzmUsN81+HWrmymudIP7hdUOWMkzd31uZWzqjvFo10YirOiyvtBcHZRcV13zqdcG2aHTF5Emrl9s+gUlTCzJr/YY1ncCGV43g/aCGASEJRK90sgoEYDE0jhODoRLyjRdC3HAIbEzdDIQ2F1dav55ZVE6FxFUJ9YmoIKds/g3K1zosrOW6Z6dMacgG+IOgFU7dD+lx7aiV9HhCQVAvolukhMoVKW23uomVu9tVHAJ0PofX5xriZ4SiRUKDhEG6Fy+kCh/tl0oM6IDtpc0vPqugoq9rnTZNDXFltr82dWcoihDL/+4Kp29X35edav756QVltlkVgC6gzi62ds+ubFVK5cn8cxTbGjnX2EVgRQ3YfgqPJzoLgSjpPIhLyptdyK1iKWluFYvlZ9X36DkCtIaCtQnEpnadal/1TJlyALwh6wfQdygmWbkNNpM4qXnFA8c0nZ1T1zheut97EL6ZyDARFf8L+AIamYCDeXhCsXQZkQxAEAoIjyVjbENJsscJyttQ/HwfAxE2QW1LlMlph+Tn1nKxD6MTUEHXZnt46t5Tj8HjM+/h1G5O3AgKWn2/9ui3kLItgejjCaGyAFxZbl9++2G+rEroHHTTRiwBHkzGuZTYpt+kNcSGV58hEH2v0NHxNbfbxkiWkLUFwbCKOEPDicmthZgvpW3xBsE8wdZv6vtRGm0ud3YpsAW6bVQvj+ettNvFKniPJuHc18HdCCHUQLT3b+nVbS7U3Ckqbu9BGE3puQd3X7Qf0ylW7AlubS7XQ5qRUB6ytdaP4XaCtn+DMUra/G3hgUB2ky22egX04WValEIKTMwmeb6NM2M+mb34mUPtgY741tVItKSGRbFpDE3FLGO8+SKWUPLuwwe2zfVxDo0dU4Ec7y3L5OdW/I6662w2GgxwcHeR8m31wdilLMCD6Z9m7AF8Q9ILkzRAItd7E9TqkX9x2iI7GwsyORHmhjVl/IZXvryYHcOAeuP6kmu9OLDwOwfC2g/T2A8NcSOXJlXY7N5+xBMGdB/Qa2LiCRghpC21u/SqUNmB6uyAQorUgKFVrXErluWW6j4coqPl1sghGDkF4a12cnBnm7FK2ZeTQhZU8wYDor6PywN3q+/Undr+29AzUK2qdWbjDWh9PX9ttxV1fL7KaL3PnwT6uoWBICeN21NDSsw1rwMZNU0Nto8/OLGY5moz1J2DCJfiCoBeEwuogamURbFxTNUyaBAFgaXO7LYLNsjqE+sZN2zhwtzosW9FDC4+rDRDaqiL68rlRpIRnWmziZ6+tMz0cYTLRxx6t48dUFVLbKdwM+7lMbW1iW5trxe9eTClut+8m/dTt6v9faRGWmzq7aw3dPjtMoVxrmU9wZinLkWTM+6zoZsy+XH1feGL3a9e+rr43CYKbpoaIhYM8eXVt13BbOPRVEID6H6+0CPyo19T1HYLgxOQQF1K5lsL43HKOW28gRzH4gqB3TLXR5q6dVt9nXrbt8snZYV5cye3iR5+cX6Nal7ziiH5PV1dgb9Cd2ly9DgtPbtvAAC+bUxv0qfm1XR/1zMJ6f60BgOCA2qT2/7sZtqVmU3gWbp4aasmx7xm3O3W7cgjvFGaV4paPowknGxTjdstSSsnXL2e451Cf19DgmMryXnh892sLT6g8FLuUAxAMCO48OMKT862ViYCA22b6SA2BWufp87vprdULUC1us4pBBX4UK3Uu7qC3ipUal9L5G8o/AL4g6B3Tt6uksZ29cy8/okLmbG3JwsmZBJWa3KWRPnZZVT+893CfN/HkSQhGdm/izEUVMrdDECSHIsyNDfLk1e2beLNc4/xyjjv6rckBHHktXH10d/TW0nMwcli1hWzCqaPjnF3KsZrfPn7PuN12kUPXTqvQ0iOv23b55qkEAcEuYXYxlSedL/PKo31eQ2BRjE/svr7wOBy8t+Gst/HyuRGeu76xSyF6+to6N08l+uest3Hkter7la9sv277z6a3C4JTR1Xv6K9e2C44zi/nkLKP4ccuwRcEvWL6LvV94evbr19+GA69SmmsTbCdYDvpodOXVjkxGWes3ynpwQGYuWu3WW8Lhh2CAODlh0Z5codF8PziBnUJd+2FIDj8GlXX//qT269ff2KXNg3w6uNqE3/tYnrb9a9eWOX22WEioT4fQuPHVfTW/A6r5vLDgIDDr952eTAc5OhEvOGct3H6klImTu2FIJi9W2XZN2vU5TysPN9yDb1sbpRytc7Zpe1WzTMLG9xxsM/WAMCBe5U/7MrD268vPgUioBSmJhyfiDOZiPDVHWvoaxfV/fed2uoRviDoFUdeqxbQuc9sXdvMKCfZ4dfuGn5sIs7I4ABfPpdqXKvXJV+/ssapI+P9mPFutHIYLzwOoeiuDQBKm5vPbJJqyod4tsHt7sEmbmhzTZs4/aIy9Y9/267hdx0cZXAgyFeatLn1QoWvX8nwbbfuQfe7YEjN89yntzdIufwPMH2nol524NSRMR65kN6mUZ++vMpYbKARGdVX2A7jZsty8WlFebVSJuZGAbYpFEsbRVaypf7TiwADUSUMLj+y/frZTytFY2B7SLcQglcfT/KVC+ltCaIPnVnmxGT8hmhY3wxfEPSKyBAc/WY4+3db1658FZBbB1QTQsEAb7xtms8+v9RoUvPiSo71zQqv2AtNDpTpXs7CYpNGfflhZSkEdyf12Jv4iStrjWt//8IyB0ai3veYbYWhKVUmoHkT28/j1vt2DQ+HApw6OsYjL25pc18+n6Iu2RtBAHDLm1WUk+1vqlXg6tdariGAN98+Q7ZY5SsXtu7h9OUMrzgytjf1bWbvVprzpS9tXbNplhaC4ND4IGOxAR5vWkNfOKs6tfXdT2bjyGuUFVm2nPBrV2Dpabj1LS2Hf9OxcZY2So2clEK5ylcvrPLtt071acLuwRcEbuDWtyjt045lv/KwikueO9Vy+HfeMc1G0yb+imVOntqrDXDLfcpP8PifqN+XnlNU1+33txz+8kOjDEdDfPwJ1Yd2OVvki+dSvO2eg3tXZOvwa9T/3bZqzvyt4t7HjrYc/urjSc4sZUlbVs3nzywzHA01hFzfcfOb1XdbgC08oaLO2giC1988QSwc5NPPLQLqGVxYyfOKvbIqB0fhpjfBkx9VdZOkhCf+BA6eUv2ld0AIwbfdOsWDzyw2QpE/9tg8xybijYCEvuPwa1SC6Pyj6vcztjLxj1oOf/Vx1WPE3sePvJimXKvzbftNEAghvk8I8awQoi6EaH3qqXH3CSHOCCHOCyHe23T9mBDiq9b1PxdC3Bg1W3eieROXsvDknyted6B1hvC33DLJ4ECQB59dpFKr88EvXeDkTKK/GbnNiI3D7W+Fpx5Q2tBjH1Z018u/v+Xw6ECQd7zyEH/3zCLX1zf55BML1OqS7713ruX4vuCmN6rs4qf/QlFzlx9WAq4NXnNCbeJPPrmAlJIvnF3hm2+Z7F8y304MH1ARZuc+rX7/+odVjsoOR7GN6ECQb71lks88t0S9LvlfX7yAEPCm2/fwELr3h1TXvhc/p2it1Fl45Y+1Hf5DrzlCtlTl449f40q6wNcurvL2V8ztoTLxaggn4Ku/r34/8ykVHm4l8+3Eick4U4kIf/n4NaSUPHRmmVg4yCuP7ZFC1wN6XfXPAN8LfLHdACFEEHg/8BbgduBdQgjbBf+bwG9LKW8CMkD7VfNSxtgRxeU+8n74q5+F3CK88VfaDo8OBPm2Wyf566eu82t//RyX0wV+4Ttv3duStfe+W0UJfem/wFMfhdveCvFk2+E/9Oqj1KXktz59lj/72hVefmi0/zkQzbjtrYqC+Owvw9++V5WebqPJAdxzaJRvvnmC//LgGX7hY0+xnC3xnXfs1lz7ipPfpeiUv3sfPP7H8Op/CUPtqao33zHN0kaJ3/y7F/jIw5f5J/fOcdPUHkar3HKfKkD38O/Cl38boiNwx/e0HX7PoVHuOjjCh//hIr/79+cQAr7nnoN9nPAOREfgm39OCYBP/7+K5mpDC4Gyan72jbfwtYur/D8ff4a/OD3Pt9062f9gAxfQa6vK56WULTJ5tuFVwHkp5QUpZRn4KHC/1bD+DcDHrHEfQTWwvzHxtt8DJDzzMbjnB9vSQjZ+5jtuZjg6wB89cplTR8Z4w8k9NiePvh4mboUv/VelWXfQ5AAOJ2O88bZp/uKxeV5cyfNjrz/WcbznCATgLf9JaaRPfRS+5d90fAZCCP7j96qIr489Ns+PvO4o//hls/2abWu89qeVZfOV34PhOfjWX+w4/C13zvKdd0zzP794AQT86zfd0nG85wgOwD0/pA7Q85+Fu3+wrVUM6hm8+7VHeXElz188Ns933TXbnz7LnfDqf6nqgz38uzD3Snjtv+o4/J2vPMQ3HRvnz752hWMTcX7t/jv7NFF3IdqVRDb6ECE+D/y8lHJXVo8Q4u3AfXYPYyHEDwHfBPwK8BXLGkAIcQj4Wylly/+kEOI9wHsADh8+/IrLl7s089gLrF+DRz+oNnSsO1dbKFf5069e4Q0np/pbG6YdNjOqSUooClO7o4V2YjVf5tmFdW6dSTCV2AMncSs89mEYmmnpJG6Fh15Y5txylh//5uMvjSYitQr8w3+DY9+iwo+7QErJp55eJBQUe2/RgMrETZ2FUk4FGwx0Xhf1uuSrF1eZTEQ4NhEnGHgJPIP5x5S/6Zv+RctgiV3DMwX+6JHL/MS3nuh/+LchhBCPSSl3aUhdBYEQ4rNAqxX2b6WUn7DGfB6PBUEzTp06JU+fbpFJ6sOHDx8+2qKdIOjaIV1K+cYe//Y14FDT73PWtTQwKoQISSmrTdd9+PDhw0cf0Y8QiUeBm60IoTDwTuCTUpkiDwFvt8a9G/hEH+bjw4cPHz6a0Gv46PcIIeaB1wB/I4R40Lp+QAjxKQBL2/8p4EHgeeABKaVdt/kXgZ8TQpwHksCHepmPDx8+fPgwhyvO4n7D9xH48OHDhzna+Qj8zGIfPnz42OfwBYEPHz587HP4gsCHDx8+9jl8QeDDhw8f+xw3pLNYCLECOE0tngBSXUe9dHGjzx9u/Hu40ecPN/493Ojzh725hyNSyl0FrG5IQdALhBCnW3nNbxTc6POHG/8ebvT5w41/Dzf6/OGldQ8+NeTDhw8f+xy+IPDhw4ePfY79KAg+sNcT6BE3+vzhxr+HG33+cOPfw40+f3gJ3cO+8xH48OHDh4/t2I8WgQ8fPnz4aIIvCHz48OFjn2NfCQIhxH1CiDNCiPNCiPfu9XxMIIT4AyHEshDimb2eixMIIQ4JIR4SQjwnhHhWCNG5B+BLEEKIqBDia0KIJ617+Pd7PScnEEIEhRCPCyH+eq/n4gRCiEtCiKeFEE8IIW646pNCiFEhxMeEEC8IIZ4XQrxmz+e0X3wEQoggcBZ4EzCP6pPwLinlc3s6MU0IIb4FyAF/pNPF7aUGIcQsMCul/LoQIgE8BrztRvn/A1h9tuNSypwQYgD4MvCvpJRf2eOpGUEI8XPAKWBYSvndez0fUwghLgGnpJQ3ZEKZEOIjwJeklB+0erTEpJRrezmn/WQRvAo4L6W8IKUsAx8F7t/jOWlDSvlFYHWv5+EUUsrrUsqvWz9nUb0pDu7trMwgFXLWrwPW1w2lSQkh5oDvAj6413PZjxBCjADfgtV7RUpZ3mshAPtLEBwErjb9Ps8NdhB9o0AIcRS4B/jqHk/FGBat8gSwDHxGSnmj3cPvAP8GqO/xPHqBBD4thHhMCPGevZ6MIY4BK8AfWvTcB4UQ8b2e1H4SBD5eAhBCDAH/B/hZKeXGXs/HFFLKmpTyblSP7VcJIW4Ymk4I8d3AspTysb2eS494vZTyXuAtwE9atOmNghBwL/A/pJT3AHlgz/2V+0kQXAMONf0+Z13z0SdYvPr/Af5ESvmXez2fXmCZ8w8B9+3xVEzwOuCtFsf+UeANQog/3tspmUNKec36vgx8HEX73iiYB+abLMmPoQTDnmI/CYJHgZuFEMcsB807gU/u8Zz2DSxH64eA56WUv7XX83ECIcSkEGLU+nkQFXjwwp5OygBSyvdJKeeklEdR6//vpZQ/uMfTMoIQIm4FG2BRKm8GbphIOinlInBVCHGrdek7gD0PmAjt9QT6BSllVQjxU8CDQBD4Aynls3s8LW0IIf4M+DZgQggxD/yylPJDezsrI7wO+CHgaYtjB/h/pJSf2rspGWMW+IgVgRYAHpBS3pAhmDcwpoGPK72CEPCnUsq/29spGeOngT+xFNILwI/s8Xz2T/ioDx8+fPhojf1EDfnw4cOHjxbwBYEPHz587HP4gsCHDx8+9jl8QeDDhw8f+xy+IPDhw4ePfQ5fEPjw4RKsqpL/cq/n4cOHKXxB4MOHexgFfEHg44aDLwh8+HAPvwGcsOrk/+e9nowPH7rwE8p8+HAJVlXVv74R+0X42N/wLQIfPnz42OfwBYEPHz587HP4gsCHD/eQBRJ7PQkfPkzhCwIfPlyClDIN/IMQ4hnfWezjRoLvLPbhw4ePfQ7fIvDhw4ePfQ5fEPjw4cPHPocvCHz48OFjn8MXBD58+PCxz+ELAh8+fPjY5/AFgQ8fPnzsc/iCwIcPHz72Of5/VHxfIbUc3zsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "empty_df.plot(\"t\", [\"p\", \"v\"]) # pl.plot(t,p,t,v) in matplotlib" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise** \n", "1. Create uniformly sampled time points between 0 and 30.\n", "2. Generate positional data in the xy-plane given by [0.4*t + cos(t), sin(t)]\n", "3. Create a DataFrame consisting of the three columns t, x and y\n", "4. plot x versus y using first the matplotlib plot function and then the DataFrame plot-method\n", "\n", "Velocity-data can be computed by $v_{x_i} = \\frac{x_{i+1} - x_i}{t_{i+1} - t_i}$, $v_{y_i} = \\frac{y_{i+1} - y_i}{t_{i+1} - t_i}$\n", "5. Compute the velocity data for x and y and add those as columns in the DataFrame\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A real world example. Oslo bysykkel data\n", "\n", "We go to https://oslobysykkel.no/apne-data/historisk (you can also get there by \"oslo bysykkel data historisk\" on google). We download the September data as CSV. " ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "import zipfile\n", "from pathlib import Path\n", "\n", "import requests\n", "\n", "\n", "def download_file(filename, url):\n", " path = Path(filename)\n", " if path.exists():\n", " return path\n", " print(f\"Downloading {path}\")\n", " with requests.get(url, stream=True) as r:\n", " r.raise_for_status()\n", " with path.open(\"wb\") as f:\n", " for chunk in r.iter_content(chunk_size=8192):\n", " f.write(chunk)\n", " return path\n", "\n", "\n", "def download_trips(year, month):\n", " dest = Path(\"data\") / f\"oslo_bike_{year}_{month:02}.csv\"\n", " return download_file(\n", " dest,\n", " f\"https://data.urbansharing.com/oslobysykkel.no/trips/v1/{year}/{month:02}.csv\",\n", " )\n", "\n", "\n", "trip_csv = download_trips(2021, 9)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import pylab as pl\n", "\n", "trips = pd.read_csv(trip_csv)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
started_atended_atdurationstart_station_idstart_station_namestart_station_descriptionstart_station_latitudestart_station_longitudeend_station_idend_station_nameend_station_descriptionend_station_latitudeend_station_longitude
02021-09-01 03:00:15.478000+00:002021-09-01 03:20:12.685000+00:001197620Bislettgataved Sofies Gate59.92377410.734713735Oslo Hospitalved trikkestoppet59.90321310.767344
12021-09-01 03:03:04.080000+00:002021-09-01 03:06:10.732000+00:00186422St. Hanshaugenlangs Waldemar Thranes gate59.92370310.740542499Bjerregaards gateovenfor Fredrikke Qvams gate59.92548810.746058
22021-09-01 03:16:41.288000+00:002021-09-01 03:25:20.740000+00:00519424Birkelundenlangs Seilduksgata59.92561110.760926478JernbanetorgetEuroparådets plass59.91190110.749929
32021-09-01 03:21:55.708000+00:002021-09-01 03:28:20.138000+00:00384446Bislett Stadionved rundkjøringen59.92547110.731219478JernbanetorgetEuroparådets plass59.91190110.749929
42021-09-01 03:26:16.090000+00:002021-09-01 03:30:30.133000+00:00254514Sofienberggataved Sars gate59.92120610.769989542Grünerhagen Nordved Sofienberggata59.92242610.755427
..........................................
1900002021-09-30 22:56:22.073000+00:002021-09-30 23:11:50.892000+00:00928415Sinsenveienved Kongehellegata59.92954210.781053537St. Olavs gateved Pilestredet59.91796810.738629
1900012021-09-30 22:57:17.478000+00:002021-09-30 23:01:52.188000+00:00274460Botanisk Hage sørlangs Jens Bjelkes gate59.91541810.769330475Hausmanns brulangs Nylandsveien59.91465110.759872
1900022021-09-30 22:57:33.599000+00:002021-09-30 23:04:41.205000+00:00427399Uelands gateVed Ulvetrappen (Ilatrappen)59.92954510.748986622Pilestredet 63ved trikkestoppet59.92388310.731363
1900032021-09-30 22:58:05.623000+00:002021-09-30 23:05:39.679000+00:00454465Bjørvikaunder broen Nylandsveien59.90900610.756180390Saga Kinolangs Olav Vs gate59.91424010.732771
1900042021-09-30 22:58:36.872000+00:002021-09-30 23:03:06.333000+00:00269412Jakob kirkelangs Torggata59.91786610.754898442Vulkanved Maridalsveien59.92251010.751010
\n", "

190005 rows × 13 columns

\n", "
" ], "text/plain": [ " started_at ended_at \\\n", "0 2021-09-01 03:00:15.478000+00:00 2021-09-01 03:20:12.685000+00:00 \n", "1 2021-09-01 03:03:04.080000+00:00 2021-09-01 03:06:10.732000+00:00 \n", "2 2021-09-01 03:16:41.288000+00:00 2021-09-01 03:25:20.740000+00:00 \n", "3 2021-09-01 03:21:55.708000+00:00 2021-09-01 03:28:20.138000+00:00 \n", "4 2021-09-01 03:26:16.090000+00:00 2021-09-01 03:30:30.133000+00:00 \n", "... ... ... \n", "190000 2021-09-30 22:56:22.073000+00:00 2021-09-30 23:11:50.892000+00:00 \n", "190001 2021-09-30 22:57:17.478000+00:00 2021-09-30 23:01:52.188000+00:00 \n", "190002 2021-09-30 22:57:33.599000+00:00 2021-09-30 23:04:41.205000+00:00 \n", "190003 2021-09-30 22:58:05.623000+00:00 2021-09-30 23:05:39.679000+00:00 \n", "190004 2021-09-30 22:58:36.872000+00:00 2021-09-30 23:03:06.333000+00:00 \n", "\n", " duration start_station_id start_station_name \\\n", "0 1197 620 Bislettgata \n", "1 186 422 St. Hanshaugen \n", "2 519 424 Birkelunden \n", "3 384 446 Bislett Stadion \n", "4 254 514 Sofienberggata \n", "... ... ... ... \n", "190000 928 415 Sinsenveien \n", "190001 274 460 Botanisk Hage sør \n", "190002 427 399 Uelands gate \n", "190003 454 465 Bjørvika \n", "190004 269 412 Jakob kirke \n", "\n", " start_station_description start_station_latitude \\\n", "0 ved Sofies Gate 59.923774 \n", "1 langs Waldemar Thranes gate 59.923703 \n", "2 langs Seilduksgata 59.925611 \n", "3 ved rundkjøringen 59.925471 \n", "4 ved Sars gate 59.921206 \n", "... ... ... \n", "190000 ved Kongehellegata 59.929542 \n", "190001 langs Jens Bjelkes gate 59.915418 \n", "190002 Ved Ulvetrappen (Ilatrappen) 59.929545 \n", "190003 under broen Nylandsveien 59.909006 \n", "190004 langs Torggata 59.917866 \n", "\n", " start_station_longitude end_station_id end_station_name \\\n", "0 10.734713 735 Oslo Hospital \n", "1 10.740542 499 Bjerregaards gate \n", "2 10.760926 478 Jernbanetorget \n", "3 10.731219 478 Jernbanetorget \n", "4 10.769989 542 Grünerhagen Nord \n", "... ... ... ... \n", "190000 10.781053 537 St. Olavs gate \n", "190001 10.769330 475 Hausmanns bru \n", "190002 10.748986 622 Pilestredet 63 \n", "190003 10.756180 390 Saga Kino \n", "190004 10.754898 442 Vulkan \n", "\n", " end_station_description end_station_latitude \\\n", "0 ved trikkestoppet 59.903213 \n", "1 ovenfor Fredrikke Qvams gate 59.925488 \n", "2 Europarådets plass 59.911901 \n", "3 Europarådets plass 59.911901 \n", "4 ved Sofienberggata 59.922426 \n", "... ... ... \n", "190000 ved Pilestredet 59.917968 \n", "190001 langs Nylandsveien 59.914651 \n", "190002 ved trikkestoppet 59.923883 \n", "190003 langs Olav Vs gate 59.914240 \n", "190004 ved Maridalsveien 59.922510 \n", "\n", " end_station_longitude \n", "0 10.767344 \n", "1 10.746058 \n", "2 10.749929 \n", "3 10.749929 \n", "4 10.755427 \n", "... ... \n", "190000 10.738629 \n", "190001 10.759872 \n", "190002 10.731363 \n", "190003 10.732771 \n", "190004 10.751010 \n", "\n", "[190005 rows x 13 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trips" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can work with the data using normal pylab (and numpy functions):" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([ 5658., 28023., 40349., 35711., 26288., 17542., 11016., 6854.,\n", " 4433., 2907.]),\n", " array([ 0., 150., 300., 450., 600., 750., 900., 1050., 1200.,\n", " 1350., 1500.]),\n", " )" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD4CAYAAAAO9oqkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXlklEQVR4nO3df7DddZ3f8efL8ENWqwlyl6ZJpoma6U50RtRbwHGntVhDAMfgDOuEOku01GwrzGjX6Rp0p7gKHWi7sjpV3GzJGhzXQFFLBkLTFNlx/IPARRAIyHINsSQTyJXwQ+ssbth3/zifwDHem3vuvbn3HMjzMXPmfL/vz+f7/b7PNzn3fb7f7+ecb6oKSdKx7VX9TkCS1H8WA0mSxUCSZDGQJGExkCQBx/U7gek65ZRTaunSpf1OQ5JeVu65556fVdXQ4fGXbTFYunQpIyMj/U5Dkl5Wkvx0vLiniSRJFgNJksVAkoTFQJKExUCShMVAkoTFQJLEFIpBknlJ7k1yS5tflmRHktEkNyQ5ocVPbPOjrX1p1zoua/FHkpzdFV/VYqNJ1h/F1ydJ6sFUjgw+ATzcNX81cE1VvRl4Gri4xS8Gnm7xa1o/kqwA1gBvAVYBX20FZh7wFeAcYAVwYesrSZojPX0DOcli4DzgSuAPkwQ4C/hXrcsm4HPAtcDqNg1wE/DfWv/VwOaqeh54LMkocHrrN1pVu9q2Nre+D83olenXLF1/a1+2u/uq8/qyXUlT0+uRwZ8BfwT8fZt/A/BMVR1s83uARW16EfA4QGt/tvV/MX7YMhPFJUlzZNJikOT9wP6qumcO8pksl3VJRpKMjI2N9TsdSXrF6OXI4N3AB5LsBjbTOT30JWB+kkOnmRYDe9v0XmAJQGt/PfBUd/ywZSaK/4aq2lBVw1U1PDT0Gz+6J0mapkmLQVVdVlWLq2opnQvA36uqDwN3ABe0bmuBm9v0ljZPa/9eVVWLr2mjjZYBy4G7gLuB5W100gltG1uOyquTJPVkJj9h/Wlgc5IrgHuB61r8OuAb7QLxATp/3KmqnUlupHNh+CBwSVW9AJDkUmAbMA/YWFU7Z5CXJGmKplQMquqvgb9u07t4aTRQd5+/BX5vguWvpDMi6fD4VmDrVHKRJB09fgNZkmQxkCRZDCRJWAwkSVgMJElYDCRJWAwkSVgMJElYDCRJWAwkSVgMJElYDCRJWAwkSVgMJElYDCRJWAwkSVgMJEn0cKezJK8Gvg+c2PrfVFWXJ/k68M+BZ1vXj1TVfUkCfAk4F/hli/+wrWst8Met/xVVtanF3wl8HTiJzh3PPtHum6yXuaXrb+3btndfdV7fti293PRy28vngbOq6hdJjgd+kOS21vYfquqmw/qfQ+dm98uBM4BrgTOSnAxcDgwDBdyTZEtVPd36fAzYQacYrAJuQ5I0JyY9TVQdv2izx7fHkT61rwaub8vdCcxPshA4G9heVQdaAdgOrGptr6uqO9vRwPXA+dN/SZKkqerpmkGSeUnuA/bT+YO+ozVdmeT+JNckObHFFgGPdy2+p8WOFN8zTny8PNYlGUkyMjY21kvqkqQe9FQMquqFqjoNWAycnuStwGXA7wD/FDgZ+PRsJdmVx4aqGq6q4aGhodnenCQdM6Y0mqiqngHuAFZV1b52Kuh54C+B01u3vcCSrsUWt9iR4ovHiUuS5sikxSDJUJL5bfok4H3Aj9u5ftroofOBB9siW4CL0nEm8GxV7QO2ASuTLEiyAFgJbGttzyU5s63rIuDmo/kiJUlH1stoooXApiTz6BSPG6vqliTfSzIEBLgP+Let/1Y6w0pH6Qwt/ShAVR1I8gXg7tbv81V1oE1/nJeGlt6GI4kkaU5NWgyq6n7g7ePEz5qgfwGXTNC2Edg4TnwEeOtkuUiSZoffQJYkWQwkSRYDSRIWA0kSFgNJEhYDSRIWA0kSFgNJEhYDSRIWA0kSFgNJEhYDSRIWA0kSFgNJEhYDSRIWA0kSFgNJEr3dA/nVSe5K8qMkO5P8SYsvS7IjyWiSG5Kc0OIntvnR1r60a12XtfgjSc7uiq9qsdEk62fhdUqSjqCXI4PngbOq6m3AacCqdqP7q4FrqurNwNPAxa3/xcDTLX5N60eSFcAa4C3AKuCrSea1eyt/BTgHWAFc2PpKkubIpMWgOn7RZo9vjwLOAm5q8U3A+W16dZuntb83SVp8c1U9X1WPAaPA6e0xWlW7qupXwObWV5I0R3q6ZtA+wd8H7Ae2Az8Bnqmqg63LHmBRm14EPA7Q2p8F3tAdP2yZieLj5bEuyUiSkbGxsV5SlyT1oKdiUFUvVNVpwGI6n+R/ZzaTOkIeG6pquKqGh4aG+pGCJL0iTWk0UVU9A9wBvAuYn+S41rQY2Num9wJLAFr764GnuuOHLTNRXJI0R3oZTTSUZH6bPgl4H/AwnaJwQeu2Fri5TW9p87T271VVtfiaNtpoGbAcuAu4G1jeRiedQOci85aj8NokST06bvIuLAQ2tVE/rwJurKpbkjwEbE5yBXAvcF3rfx3wjSSjwAE6f9ypqp1JbgQeAg4Cl1TVCwBJLgW2AfOAjVW186i9QknSpCYtBlV1P/D2ceK76Fw/ODz+t8DvTbCuK4Erx4lvBbb2kK8kaRb4DWRJksVAkmQxkCRhMZAk0dtoIh0lS9ff2u8UJGlcHhlIkiwGkiSLgSQJi4EkCYuBJAmLgSQJi4EkCYuBJAm/dKZXsH59yW/3Vef1ZbvSTHhkIEmyGEiServt5ZIkdyR5KMnOJJ9o8c8l2ZvkvvY4t2uZy5KMJnkkydld8VUtNppkfVd8WZIdLX5Du/2lJGmO9HJkcBD4VFWtAM4ELkmyorVdU1WntcdWgNa2BngLsAr4apJ57baZXwHOAVYAF3at5+q2rjcDTwMXH6XXJ0nqwaTFoKr2VdUP2/TPgYeBRUdYZDWwuaqer6rHgFE6t8c8HRitql1V9StgM7A6SYCzgJva8puA86f5eiRJ0zClawZJltK5H/KOFro0yf1JNiZZ0GKLgMe7FtvTYhPF3wA8U1UHD4uPt/11SUaSjIyNjU0ldUnSEfRcDJK8Fvg28Mmqeg64FngTcBqwD/jT2UiwW1VtqKrhqhoeGhqa7c1J0jGjp+8ZJDmeTiH4ZlV9B6Cqnuxq/wvglja7F1jStfjiFmOC+FPA/CTHtaOD7v6SpDnQy2iiANcBD1fVF7viC7u6fRB4sE1vAdYkOTHJMmA5cBdwN7C8jRw6gc5F5i1VVcAdwAVt+bXAzTN7WZKkqejlyODdwO8DDyS5r8U+Q2c00GlAAbuBPwCoqp1JbgQeojMS6ZKqegEgyaXANmAesLGqdrb1fRrYnOQK4F46xUeSNEcmLQZV9QMg4zRtPcIyVwJXjhPfOt5yVbWLzmgjSVIf+A1kSZLFQJJkMZAkYTGQJGExkCRhMZAkYTGQJGExkCRhMZAkYTGQJGExkCRhMZAkYTGQJGExkCRhMZAkYTGQJGExkCTR2z2QlyS5I8lDSXYm+USLn5xke5JH2/OCFk+SLycZTXJ/knd0rWtt6/9okrVd8XcmeaAt8+V232VJ0hzp5cjgIPCpqloBnAlckmQFsB64vaqWA7e3eYBzgOXtsQ64FjrFA7gcOIPOLS4vP1RAWp+PdS23auYvTZLUq0mLQVXtq6oftumfAw8Di4DVwKbWbRNwfpteDVxfHXcC85MsBM4GtlfVgap6GtgOrGptr6uqO6uqgOu71iVJmgNTumaQZCnwdmAHcGpV7WtNTwCntulFwONdi+1psSPF94wTH2/765KMJBkZGxubSuqSpCPouRgkeS3wbeCTVfVcd1v7RF9HObffUFUbqmq4qoaHhoZme3OSdMzoqRgkOZ5OIfhmVX2nhZ9sp3hoz/tbfC+wpGvxxS12pPjiceKSpDnSy2iiANcBD1fVF7uatgCHRgStBW7uil/URhWdCTzbTidtA1YmWdAuHK8EtrW255Kc2bZ1Ude6JElz4Lge+rwb+H3ggST3tdhngKuAG5NcDPwU+FBr2wqcC4wCvwQ+ClBVB5J8Abi79ft8VR1o0x8Hvg6cBNzWHpKkOTJpMaiqHwATjft/7zj9C7hkgnVtBDaOEx8B3jpZLpKk2eE3kCVJFgNJksVAkoTFQJKExUCShMVAkoTFQJJEb186kzQFS9ff2rdt777qvL5tWy9vHhlIkiwGkiSLgSQJi4EkCYuBJAmLgSQJi4EkCYuBJAmLgSSJ3u6BvDHJ/iQPdsU+l2Rvkvva49yutsuSjCZ5JMnZXfFVLTaaZH1XfFmSHS1+Q5ITjuYLlCRNrpcjg68Dq8aJX1NVp7XHVoAkK4A1wFvaMl9NMi/JPOArwDnACuDC1hfg6rauNwNPAxfP5AVJkqZu0mJQVd8HDkzWr1kNbK6q56vqMWAUOL09RqtqV1X9CtgMrE4S4Czgprb8JuD8qb0ESdJMzeSawaVJ7m+nkRa02CLg8a4+e1psovgbgGeq6uBh8XElWZdkJMnI2NjYDFKXJHWbbjG4FngTcBqwD/jTo5XQkVTVhqoarqrhoaGhudikJB0TpvUT1lX15KHpJH8B3NJm9wJLuroubjEmiD8FzE9yXDs66O4vSZoj0zoySLKwa/aDwKGRRluANUlOTLIMWA7cBdwNLG8jh06gc5F5S1UVcAdwQVt+LXDzdHKSJE3fpEcGSb4FvAc4Jcke4HLgPUlOAwrYDfwBQFXtTHIj8BBwELikql5o67kU2AbMAzZW1c62iU8Dm5NcAdwLXHe0XpwkqTeTFoOqunCc8IR/sKvqSuDKceJbga3jxHfRGW0kSeoTv4EsSbIYSJIsBpIkLAaSJCwGkiQsBpIkLAaSJCwGkiQsBpIkLAaSJCwGkiQsBpIkLAaSJCwGkiSmeaczSYNp6fpb+7Ld3Ved15ft6ujxyECSNHkxSLIxyf4kD3bFTk6yPcmj7XlBiyfJl5OMJrk/yTu6llnb+j+aZG1X/J1JHmjLfDlJjvaLlCQdWS9HBl8HVh0WWw/cXlXLgdvbPMA5dO57vBxYB1wLneJB53aZZ9C5q9nlhwpI6/OxruUO35YkaZZNWgyq6vvAgcPCq4FNbXoTcH5X/PrquBOYn2QhcDawvaoOVNXTwHZgVWt7XVXdWVUFXN+1LknSHJnuNYNTq2pfm34COLVNLwIe7+q3p8WOFN8zTnxcSdYlGUkyMjY2Ns3UJUmHm/EF5PaJvo5CLr1sa0NVDVfV8NDQ0FxsUpKOCdMtBk+2Uzy05/0tvhdY0tVvcYsdKb54nLgkaQ5NtxhsAQ6NCFoL3NwVv6iNKjoTeLadTtoGrEyyoF04Xglsa23PJTmzjSK6qGtdkqQ5MumXzpJ8C3gPcEqSPXRGBV0F3JjkYuCnwIda963AucAo8EvgowBVdSDJF4C7W7/PV9Whi9IfpzNi6STgtvaQJM2hSYtBVV04QdN7x+lbwCUTrGcjsHGc+Ajw1snykCTNHr+BLEmyGEiSLAaSJCwGkiQsBpIkLAaSJCwGkiQsBpIkLAaSJCwGkiQsBpIkevhtIkmazNL1t/Zlu7uvOq8v230l8shAkmQxkCRZDCRJWAwkSVgMJEnMcDRRkt3Az4EXgINVNZzkZOAGYCmwG/hQVT3d7nH8JTq3xfwl8JGq+mFbz1rgj9tqr6iqTTPJazL9GvkgSYPqaBwZ/IuqOq2qhtv8euD2qloO3N7mAc4BlrfHOuBagFY8LgfOAE4HLk+y4CjkJUnq0WycJloNHPpkvwk4vyt+fXXcCcxPshA4G9heVQeq6mlgO7BqFvKSJE1gpsWggP+d5J4k61rs1Kra16afAE5t04uAx7uW3dNiE8V/Q5J1SUaSjIyNjc0wdUnSITP9BvLvVtXeJL8NbE/y4+7GqqokNcNtdK9vA7ABYHh4+KitV5KOdTM6Mqiqve15P/BdOuf8n2ynf2jP+1v3vcCSrsUXt9hEcUnSHJn2kUGS1wCvqqqft+mVwOeBLcBa4Kr2fHNbZAtwaZLNdC4WP1tV+5JsA/5T10XjlcBl081L0rGjnyMDX2m/izST00SnAt/tjBjlOOCvqup/JbkbuDHJxcBPgQ+1/lvpDCsdpTO09KMAVXUgyReAu1u/z1fVgRnkJUmaomkXg6raBbxtnPhTwHvHiRdwyQTr2ghsnG4ukqSZ8RvIkiSLgSTJYiBJwmIgScJiIEnCeyBL0rS80u777JGBJMliIEmyGEiSsBhIkrAYSJKwGEiSsBhIkrAYSJKwGEiSsBhIkrAYSJIYoGKQZFWSR5KMJlnf73wk6VgyEMUgyTzgK8A5wArgwiQr+puVJB07BqIYAKcDo1W1q6p+BWwGVvc5J0k6ZgzKT1gvAh7vmt8DnHF4pyTrgHVt9hdJHpnm9k4BfjbNZefKoOc46PnB4Oc46PnB4Oc46PnBUc4xV894Ff94vOCgFIOeVNUGYMNM15NkpKqGj0JKs2bQcxz0/GDwcxz0/GDwcxz0/ODlkSMMzmmivcCSrvnFLSZJmgODUgzuBpYnWZbkBGANsKXPOUnSMWMgThNV1cEklwLbgHnAxqraOYubnPGppjkw6DkOen4w+DkOen4w+DkOen7w8siRVFW/c5Ak9dmgnCaSJPWRxUCSdGwVg0H5yYskS5LckeShJDuTfKLFT06yPcmj7XlBiyfJl1ve9yd5xxzlOS/JvUluafPLkuxoedzQLvaT5MQ2P9ral85RfvOT3JTkx0keTvKuQdqHSf59+/d9MMm3kry63/swycYk+5M82BWb8j5Lsrb1fzTJ2jnI8b+0f+f7k3w3yfyutstajo8kObsrPmvv9/Fy7Gr7VJJKckqb78t+nLKqOiYedC5M/wR4I3AC8CNgRZ9yWQi8o03/A+Bv6PwMx38G1rf4euDqNn0ucBsQ4Exgxxzl+YfAXwG3tPkbgTVt+mvAv2vTHwe+1qbXADfMUX6bgH/Tpk8A5g/KPqTzRcrHgJO69t1H+r0PgX8GvAN4sCs2pX0GnAzsas8L2vSCWc5xJXBcm766K8cV7b18IrCsvcfnzfb7fbwcW3wJnYEwPwVO6ed+nPJr6teG5/yFwruAbV3zlwGX9TuvlsvNwPuAR4CFLbYQeKRN/zlwYVf/F/vNYk6LgduBs4Bb2n/kn3W9IV/cn+0//7va9HGtX2Y5v9e3P7Y5LD4Q+5CXvlV/ctsntwBnD8I+BJYe9od2SvsMuBD48674r/WbjRwPa/sg8M02/Wvv40P7cS7e7+PlCNwEvA3YzUvFoG/7cSqPY+k00Xg/ebGoT7m8qJ0OeDuwAzi1qva1pieAU9t0P3L/M+CPgL9v828Anqmqg+Pk8GJ+rf3Z1n82LQPGgL9sp7L+e5LXMCD7sKr2Av8V+L/APjr75B4Gax8eMtV91u/30r+m80mbI+Qy5zkmWQ3sraofHdY0MDkeybFUDAZOktcC3wY+WVXPdbdV56NCX8b9Jnk/sL+q7unH9nt0HJ3D9Gur6u3A/6NziuNFfd6HC+j82OIy4B8BrwFW9SOXqejnPutFks8CB4Fv9juXbkl+C/gM8B/7nct0HUvFYKB+8iLJ8XQKwTer6jst/GSSha19IbC/xec693cDH0iym84vyJ4FfAmYn+TQFxW7c3gxv9b+euCpWcwPOp+i9lTVjjZ/E53iMCj78F8Cj1XVWFX9HfAdOvt1kPbhIVPdZ315LyX5CPB+4MOtaA1Sjm+iU/h/1N43i4EfJvmHA5TjER1LxWBgfvIiSYDrgIer6otdTVuAQyMK1tK5lnAoflEblXAm8GzXYf1RV1WXVdXiqlpKZz99r6o+DNwBXDBBfofyvqD1n9VPl1X1BPB4kn/SQu8FHmJA9iGd00NnJvmt9u99KL+B2YddprrPtgErkyxoR0ArW2zWJFlF57TlB6rql4flvqaNxloGLAfuYo7f71X1QFX9dlUtbe+bPXQGiTzBAO3HI+rXxYp+POhc1f8bOqMMPtvHPH6XzqH4/cB97XEunXPEtwOPAv8HOLn1D52b//wEeAAYnsNc38NLo4neSOeNNgr8D+DEFn91mx9t7W+co9xOA0bafvyfdEZkDMw+BP4E+DHwIPANOiNe+roPgW/RuYbxd3T+YF08nX1G57z9aHt8dA5yHKVzfv3Q++VrXf0/23J8BDinKz5r7/fxcjysfTcvXUDuy36c6sOfo5AkHVOniSRJE7AYSJIsBpIki4EkCYuBJAmLgSQJi4EkCfj/PaWzUWLHI1gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "pl.hist(trips[\"duration\"], range=[0, 1500])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also use DataFrame built-in functions:" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
started_atended_atdurationstart_station_idstart_station_namestart_station_descriptionstart_station_latitudestart_station_longitudeend_station_idend_station_nameend_station_descriptionend_station_latitudeend_station_longitude
541202021-09-09 06:29:40.293000+00:002021-09-09 06:30:42.103000+00:0061381Grønlands torgved Tøyenbekken59.91252010.762240381Grønlands torgved Tøyenbekken59.91252010.762240
1500332021-09-23 16:57:04.305000+00:002021-09-23 16:58:05.488000+00:0061421Alexander Kiellands Plasslangs Maridalsveien59.92806710.751203421Alexander Kiellands Plasslangs Maridalsveien59.92806710.751203
535822021-09-09 05:53:12.313000+00:002021-09-09 05:54:14.047000+00:00616237 Juni Plassenlangs Henrik Ibsens gate59.91506010.7312726237 Juni Plassenlangs Henrik Ibsens gate59.91506010.731272
700382021-09-11 09:08:26.043000+00:002021-09-11 09:09:27.337000+00:00612304Hedmarksgataved Jordal Amfi59.91178410.7838842304Hedmarksgataved Jordal Amfi59.91178410.783884
544832021-09-09 06:53:24.342000+00:002021-09-09 06:54:25.653000+00:0061474Blindern studentparkeringrett ved Blindern Studenterhjem59.94087410.720779474Blindern studentparkeringrett ved Blindern Studenterhjem59.94087410.720779
..........................................
528272021-09-08 21:45:08.196000+00:002021-09-09 05:06:05.736000+00:00264571755Aker Bryggeved trikkestopp59.91118410.7300351755Aker Bryggeved trikkestopp59.91118410.730035
927282021-09-14 22:37:30.359000+00:002021-09-15 06:03:14.857000+00:0026744525Myraløkka Østved Bentsenbrua59.93720510.760581597Fredensborgved rundkjøringen59.92099510.750358
949552021-09-15 07:51:00.736000+00:002021-09-15 15:25:43.368000+00:0027282468Skillebekklangs Drammensveien59.91279310.710103390Saga Kinolangs Olav Vs gate59.91424010.732771
88842021-09-02 07:15:39.199000+00:002021-09-02 15:05:55.621000+00:0028216615Munkedamsveienved Haakon VIIs gate59.91352310.730106580Georg Morgenstiernes husved Moltke Moes vei59.93902610.723003
1250872021-09-20 06:48:08.055000+00:002021-09-20 16:12:09.094000+00:0033841506Botanisk Hage vestved Blytts gate59.92012810.768875569Botanisk hage sør-vestved Sars' gate59.91783510.766374
\n", "

190005 rows × 13 columns

\n", "
" ], "text/plain": [ " started_at ended_at \\\n", "54120 2021-09-09 06:29:40.293000+00:00 2021-09-09 06:30:42.103000+00:00 \n", "150033 2021-09-23 16:57:04.305000+00:00 2021-09-23 16:58:05.488000+00:00 \n", "53582 2021-09-09 05:53:12.313000+00:00 2021-09-09 05:54:14.047000+00:00 \n", "70038 2021-09-11 09:08:26.043000+00:00 2021-09-11 09:09:27.337000+00:00 \n", "54483 2021-09-09 06:53:24.342000+00:00 2021-09-09 06:54:25.653000+00:00 \n", "... ... ... \n", "52827 2021-09-08 21:45:08.196000+00:00 2021-09-09 05:06:05.736000+00:00 \n", "92728 2021-09-14 22:37:30.359000+00:00 2021-09-15 06:03:14.857000+00:00 \n", "94955 2021-09-15 07:51:00.736000+00:00 2021-09-15 15:25:43.368000+00:00 \n", "8884 2021-09-02 07:15:39.199000+00:00 2021-09-02 15:05:55.621000+00:00 \n", "125087 2021-09-20 06:48:08.055000+00:00 2021-09-20 16:12:09.094000+00:00 \n", "\n", " duration start_station_id start_station_name \\\n", "54120 61 381 Grønlands torg \n", "150033 61 421 Alexander Kiellands Plass \n", "53582 61 623 7 Juni Plassen \n", "70038 61 2304 Hedmarksgata \n", "54483 61 474 Blindern studentparkering \n", "... ... ... ... \n", "52827 26457 1755 Aker Brygge \n", "92728 26744 525 Myraløkka Øst \n", "94955 27282 468 Skillebekk \n", "8884 28216 615 Munkedamsveien \n", "125087 33841 506 Botanisk Hage vest \n", "\n", " start_station_description start_station_latitude \\\n", "54120 ved Tøyenbekken 59.912520 \n", "150033 langs Maridalsveien 59.928067 \n", "53582 langs Henrik Ibsens gate 59.915060 \n", "70038 ved Jordal Amfi 59.911784 \n", "54483 rett ved Blindern Studenterhjem 59.940874 \n", "... ... ... \n", "52827 ved trikkestopp 59.911184 \n", "92728 ved Bentsenbrua 59.937205 \n", "94955 langs Drammensveien 59.912793 \n", "8884 ved Haakon VIIs gate 59.913523 \n", "125087 ved Blytts gate 59.920128 \n", "\n", " start_station_longitude end_station_id end_station_name \\\n", "54120 10.762240 381 Grønlands torg \n", "150033 10.751203 421 Alexander Kiellands Plass \n", "53582 10.731272 623 7 Juni Plassen \n", "70038 10.783884 2304 Hedmarksgata \n", "54483 10.720779 474 Blindern studentparkering \n", "... ... ... ... \n", "52827 10.730035 1755 Aker Brygge \n", "92728 10.760581 597 Fredensborg \n", "94955 10.710103 390 Saga Kino \n", "8884 10.730106 580 Georg Morgenstiernes hus \n", "125087 10.768875 569 Botanisk hage sør-vest \n", "\n", " end_station_description end_station_latitude \\\n", "54120 ved Tøyenbekken 59.912520 \n", "150033 langs Maridalsveien 59.928067 \n", "53582 langs Henrik Ibsens gate 59.915060 \n", "70038 ved Jordal Amfi 59.911784 \n", "54483 rett ved Blindern Studenterhjem 59.940874 \n", "... ... ... \n", "52827 ved trikkestopp 59.911184 \n", "92728 ved rundkjøringen 59.920995 \n", "94955 langs Olav Vs gate 59.914240 \n", "8884 ved Moltke Moes vei 59.939026 \n", "125087 ved Sars' gate 59.917835 \n", "\n", " end_station_longitude \n", "54120 10.762240 \n", "150033 10.751203 \n", "53582 10.731272 \n", "70038 10.783884 \n", "54483 10.720779 \n", "... ... \n", "52827 10.730035 \n", "92728 10.750358 \n", "94955 10.732771 \n", "8884 10.723003 \n", "125087 10.766374 \n", "\n", "[190005 rows x 13 columns]" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trips.sort_values(\"duration\")" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 59.923774\n", "1 59.923703\n", "2 59.925611\n", "3 59.925471\n", "4 59.921206\n", " ... \n", "190000 59.929542\n", "190001 59.915418\n", "190002 59.929545\n", "190003 59.909006\n", "190004 59.917866\n", "Name: start_station_latitude, Length: 190005, dtype: float64" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trips[\"start_station_latitude\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise\n", "\n", "1. Make a scatter-plot showing the position (longitude, latitude) of stations in Oslo. It is OK to plot a station several times. Use matplotlib or the built-in DataFrame.plot.scatter\n", "\n", "2. (Bonus) Make a scatter-plot with different size of the cirles, and let the size be dependent on how popular a station is (i.e. how many trips were started at the given station)\n" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAekklEQVR4nO3dfbAd9X3f8fdHofYUjONYlgjEqIqNNUMHV9TcqqQDuCRjpZadIcYhjcfjh2CjppZrnMakuIYk4xYP4DwYkmlBiJC0YxinAyLYOLJUjwtxB+NepXIszDOjZBDEghZibJyC8Ld/nD3m6HIe9px9+u3u5zVz5567Z/fsd/fs/X3397C7igjMzMwmWdV0AGZmljYnCjMzm8qJwszMpnKiMDOzqZwozMxsqqOaDmAer3nNa2L9+vVNh2Fm1ip79+59MiLWLLp8qxLF+vXrWV5ebjoMM7NWkfRXRZZ305OZmU3lRGFmZlM5UZiZ2VROFGZmNpUThZmZTdWqUU9mVp71F9/+kmkHLn9bA5FY6lyjMOuhcUli2nTrN9cozGwhrpH0hxOFWUfUWXBPq5E4WXSPm57MOsBNSVYlJwozM5vKicKshyY1D7nZyMZxH4VZTzkpWF6uUZjZ3Fwj6RdFRNMx5La0tBS+zbjZeB6uapNI2hsRS4su76Yns45wUrCquOnJzMymypUoJB2Q9E1J+yQtZ9M2Srorm/55Sa+csOyFkvZLukfSR0em/5akg9ln7pO0pZQtMjOzUs1Tozg7Ik4daefaAVwcEW8EdgIXrVxA0inABcAmYCPwdkknjczye9lnnhoRX1xsE8zMrEpFmp42AHdmr/cA7xwzz8nA3RHxbEQcBu4Azi2wTjMzq1nezuwAdksK4NqI2A7cA5wD3AqcB5w4Zrn9wGWSVgPfB7YAo8OWPizpvdm0X4uIp1Z+gKStwFaAdevW5QzXzOrmUVfdlbdGcUZEvAl4K7BN0lnA+cCHJO0FjgWeW7lQRNwLXAHsBnYB+4AXsrf/M/B64FTgceB3xq04IrZHxFJELK1ZsyZnuGZWJ99rqttyJYqIOJj9PsSgP2JTRNwXEZsj4jTgJuDhCcteHxGnRcRZwFPAA9n0b0fECxHxA+A6Bv0YZmaWmJmJQtIxko4dvgY2A/slrc2mrQIuAa6ZsPxwvnUM+iduzP4+fmS2dzBopjIzs8Tk6aM4DtgpaTj/jRGxKxv2ui2b5xbgBgBJJwA7ImI43PXmrI/ieWBbRDydTb9S0qkM+j8OAP+q+OaYmVnZZiaKiHiEwdDWldOvAq4aM/0xBp3Ww7/PnPC575krUjMza4SvzDazwnyTwG7zvZ7MCvCQ0Bf1dbv7wDUKswV5SKj1hWsUZlYr18LaxzUKM6uNa2Ht5BqF9Z7PcM2mc6KwZNVRgE87w3WyMBtworAktaEAP3D52zpXG+na9lg5nCisdVIqzLpUiLYhOVsz3JltneDO0HbwhXnt5BqFmdXKSaF9XKOwXvMZrtlsrlFYkiZ1FFe1LjObzInCkjWuAHdfRHW6OIrLyuGmJ2sVNxVVx0nCJlFENB1DbktLS7G8vNx0GGadM62m5mTRfpL2RsTSosu7RmFmZlO5j8JqkVqzRmrxmKXMNQqrXGp3DJ0WjzvLzV7KicJsBScLsyM5UZiZR5PZVO6jMDPAScEmc43CzMymco3CKpfaFb913h6kLintX+seX3BnvTCpIO1CAeuL5WyWohfcuUZhnecH8pgV40RhllMXah9l8v7oj1yd2ZIOSPqmpH2SlrNpGyXdlU3/vKRXTlj2Qkn7Jd0j6aNj3v81SSHpNYW2xKxCqV002DTvj36ZZ9TT2RFx6kg71w7g4oh4I7ATuGjlApJOAS4ANgEbgbdLOmnk/ROBzcBfLxi/mZlVrMjw2A3AndnrPcA7x8xzMnB3RDwbEYeBO4BzR97/PeDXgfb0qJslxhfLWdXy9lEEsFtSANdGxHbgHuAc4FbgPODEMcvtBy6TtBr4PrAFGDZdnQMcjIhvSJq4Yklbga0A69atyxmu2Yu6MrppmqLbUub+WflZeR9A1aXvo2tyDY+V9BMRcVDSWga1h38DHAKuBlYDtwEfiYjVY5b9APAh4HsMksv/A/498BVgc0T8raQDwFJEPDktDg+PtbLMW1B1eQjqIts2b1/E6OeUtb627/c61fI8iog4mP0+xKA/YlNE3BcRmyPiNOAm4OEJy14fEadFxFnAU8ADwOuBnwS+kSWJ1wJ/IenHF90Qs7wW6Yh1886R6txud5w3b2bTk6RjgFUR8Uz2ejPwSUlrI+KQpFXAJcA1E5YfzreOQf/E6RHxNLB2ZJ4D5KhRmDWpr0lhkpX7wwV3d+XpozgO2Jn1IxwF3BgRu7Jhr9uyeW4BbgCQdAKwIyK2ZO/dnPVRPA9sy5KEWS1ceJkVNzNRRMQjDIa2rpx+FXDVmOmPMei0Hv59Zo51rJ81j9m8qkgSqbeV59nmlOK1dvDdY81ySr2tPG8ceUYlTZs+Sd7PcX9P+/gWHmaZPhdUw20fTSLD1/Psl7zzzvuZqdfkus6JwnrJhcxLpXzzxKbX33duejIzs6lco7Da1dWM4CYLs3L4wUVWq7Zf4TxP4mkiSRUZ9dT278Ym84OLes5nzPXKs2+nFbhVt/fX8d37mOsf91G0WOrDNfuozfs+z7BVH3P95BqF2Qp9PmPuy3bafJwozEakPER0nNSSWmrxWDnc9GS1ytu8sfLHXiq1ZqDU4rHyuEZhtVvkuQ+pntHPqwvbYP3jGkWL+Z456Zn2nXThe/Ex10+uUbSc/0HTk8J3kvfGf4tIYfusXq5RmI3o6hmz+wmsCCcKsxFtGrWTalzWPW56strkKYSbvD9TGzvS81wMZ1aUE4XVYp5CeNyzmKtscy9Tm2okQynFnFIs9iInCkta2Wf5VRZEi8baZOGYUi0qpVjsSO6jsN6YVhB1/SI1F7RWhGsUZi00qRbSZO2k6fVbdZwozGZIraCrq4lmkUI/tX1l5XCisFq06WwzxZhS4f6CfnKisNosUsC0LcHM6nNILe5pMdetTd/1qDbGPC8/CtV6pcijQstaz7jhv4vMk+ezF1XFY1FTK1DLiKctj4/1o1A7KrV/qq6YdYFaE/t41jpTOeMvIrWhr6nFkzonigT5IK5H1/Zl17bH0pErUUg6ADwDvAAcjoglSRuBa4BXAAeAd0fEd8YseyFwASDguoj4TDb9PwDnAD8ADgHvj4jHCm6P9UgqNYImVbW9be0vsGrMU6M4OyKeHPl7B/CxiLhD0vnARcClowtIOoVBktgEPAfskvSFiHgI+HREXJrN9xHgN4BfWXxTrIvmuV5gOH8qVxSn8nmLclKwoSJNTxuAO7PXe4AvsSJRACcDd0fEswCS7gDOBa5cUfs4BmhPr7rVoolHa857Fj1vLGX3R6R2D6yqaiGp1m76UvPKmygC2C0pgGsjYjtwD4Omo1uB84ATxyy3H7hM0mrg+8AW4IfDliRdBrwX+Fvg7HErlrQV2Aqwbt26nOFan43+487zD1t2LaWpTtqUbug3nF6kQK2i9lhmAd+1pDBO3kRxRkQclLQW2CPpPuB84GpJlwK3MWhaOkJE3CvpCmA38D1gH4N+juH7nwA+IenjwIeB3xzzGduB7TAYHjvHtrVWX85S6tClAQCp3lK87qG7ZenKMN865EoUEXEw+31I0k5gU0T8NrAZQNIGYOyeiojrgeuz+T4FPDpmts8CX2RMouirrh94Vp06k2NKCasOKfWN1WlmopB0DLAqIp7JXm8GPilpbZY4VgGXMBgBNW754XzrGPRPnJ5Nf0NEPJjNdg5wXwnbY2ZTpHgzwZX6lnzaIM9txo8DvirpG8DXgdsjYhfwLkkPMCjgHwNuAJB0gqQvjix/s6RvAZ8HtkXE09n0yyXtl/SXDJLPhaVskbXa8JbfZRYWVd5GvOxnbJf1eeO2ed7BAU0U2E4SafItPCwZeW+HUKQwWWTUUapNCvP2DRQthMfth7JviTJPjCld0Q3pHifgW3hYT4y2AU/6hyzjbDTlf/amjX4Hdd0zq8rPm8Y1myM5UVhrzOowLOvMOU8ck9Zdp6bu/FokSaSy76ZZZJ+mtg1lc6KwXln0Gotxy6+cXnezVopnvYtcnDjtOgtLg5+ZbZ2wSCd4nQVTCh3GZXe8l2nWfkghxj5zjcKSsehZZV2FbRvPeFcWsHmSRWrb6STRPNcoLCmpdoCmVnjOcuDytzU+RLcv+rBfXKOw5KR2AVgfzRo00OXvp+vbtwgnCktSn/8pV5pUaFVVoOX5zLKff55ajc3H35F8wZ21Xp6LoIoWqGXc+G6RGOrYtnnXVxWfxVfHF9xZ7+U5s06hwBnXYdzkcN1UOEG8KNV94URhnVD29QjjmlrKah7pQuFelnn3RaoFaRlSPi6cKKxV6rpobdw/ZxlXfqfWFt8mVRWkXU4+ZfHwWGuNFC5a67Mu7mcfU/m4RpEwn+mkad7RO0W+s7qHaqY4Asma5xpFonymk64qn+swbSjs6M/oe+P4hMLK5BqFWcul9CS6eWPxxW0vSnlfOFFYr7lpZzHzdCyXNXS57O8qxe8hhaQwjhNFCxUde99WVRXqde3DFAumccrcz4vcWjzPM0eq1qf/qzycKFouhTHW8yhaAJV59lj2VdTzrr9MeeIt4+ryMqV83YAdyZ3ZiSrz9hKjz2qY95kNZWqqg76szufh9Hk7kKtOhHm2o4zndLSlRmTlc40iYfM8I2CeK1mnzW/TVXGrEH8PljrXKBLXZA3A8unj99OFYbld2Ia6uEaRsD4WQNYeizwfe3TZFI5vJ4V8nCislVIdbz5Jk2Pk6y6Q896qPOXrBuxIThRWm7IKhnn7XeZd7yJnu1U97GeR9Y6ur8wkUUX8Tgrt4ETREfMWek3dwrmpgmGRK4ZXWiR5pFwQ5rkbbsrxW32cKFqqrieppV7YjVNVwlu0ptG2/Tdq1pDgSfNbt+RKFJIOAM8ALwCHI2JJ0kbgGuAVwAHg3RHxnTHLXghcAAi4LiI+k03/NPBzwHPAw8AvR8TTxTbnpdrcBrpIU02XCvxFlLH90/b5IjWNLuz7PNvgJNFd89Qozo6IJ0f+3gF8LCLukHQ+cBFw6egCkk5hkCQ2MUgIuyR9ISIeAvYAH4+Iw5KuAD4O/LsC2/ISXSg02xJnWZpO7FU+HKdv3+VKfd/+NivS9LQBuDN7vQf4EisSBXAycHdEPAsg6Q7gXODKiNg9Mt/XgF8oEIvVrIoCPW8hPe/zINqmjI730RpQ08l30vpSiMvyyZsoAtgtKYBrI2I7cA9wDnArcB5w4pjl9gOXSVoNfB/YAiyPme984HPjVixpK7AVYN26dTnDtTKtLKhTqKkVudVFFR30eRJUkeabacvO+sw87+eNf97PnuezhtOdLNKT98rsMyLiTcBbgW2SzmJQuH9I0l7gWAZNS0eIiHuBK4DdwC5gH4N+jh+S9AngMPDZcSuOiO0RsRQRS2vWrMkZrs2rT+3PTW5LqvuxS7fqtvLlqlFExMHs9yFJO4FNEfHbwGYASRuAsUdaRFwPXJ/N9yng0eF7kt4PvB34mYiIxTfDhoo0NVTddFPX8Nu+F15FhkMXkUozl5VvZqKQdAywKiKeyV5vBj4paW2WOFYBlzAYATVu+eF86xj0T5yeTf8XwK8Dbx72YZStrwduittXZ1NDnusDpi3b5mMm736e99qJ1G5RbvXKU6M4DtgpaTj/jRGxS9KFkrZl89wC3AAg6QRgR0Rsyd67OeujeB7YNjIE9g+AlwN7ss/+WkT8SgnbdAQfuO1RxwNz8sZRpdHYUhjRVebn+v+tm2Ymioh4BNg4ZvpVwFVjpj/GoNN6+PeZEz73pLkitWRUedZdxmc00fS0aJPXPCO62iBvDbHt29k3vjLbjpD3H7iu+xbNs566m0dmxbtowkqxsKyi7yfF7bTxnCjsJZr4B87Ttj6tYE4hSQynj7uKu00d7MNtKGN/Wzf4wUVWi0WvARjy4znzqSMR1mn44K7RH6ufaxRWGzc1lGvSGf/K/dzWwnVWrc19HPVxjcJ6o8lCpGiNaqV5zvjrfI5EXfs4lRpPX7hGYa03q3BI5SyziUK0yF1vZ0llv1r1XKOwJFR1hlpVYdb0GXVeizyUqMltcF9EmlyjsGRMK6BSvDVHakmhTEX6AMpcztLgRGGtUdZw03luUT6pgGuyI7WsAnVWZ3GZV8T7rrDt5kRhpUt5NMq8naDjCrgyC8OU91VVFtnmvNdvdH3fNcWJwkqV0hllU4VG0bu3lr2vFrkXU1XP7qhytJKTRHXcmW2ds7LZpM4O0rIKwqriXSQOMycK67S2F3Qr42/79kyT4igsG3DTk7XStFFQXes4TaFmkVfRK6ZT/d762Jc0yonCjHzDb4sWrlXWBua5bUfVtZIqC9Ambt3RlxOSaZworFRtugdP0RsS2sA833cZx0eZtz1J8bhMkROFla6qhw918Z+6qgsJpxXI86xv1j5f5Gw71dvY22ROFJacMv+pZ/VldNkiBeC40WJFP9Paz4nCWmvRp/F1LUHk2b4yLgRcOd1Joz+cKKzVulBYFX2a3KynAOb5jEV0LeFO0qZ+t6o4UZjNUNXjP0cLmqI3ROzrlc1NP3+jL5wozEbMKrBXmreATqnAqXoYa9Xm6ctyraAYJwpLTqr/1HliqvtCthQ1/T1NkmpcbeBEYUlK4aKtPAVzncMr25QsrFucKKyXFr0+YNK8Td+VtUxORraSE4XVLsVmpbpVXROZ9ZCneR7INGlZf4/9kStRSDoAPAO8AByOiCVJG4FrgFcAB4B3R8R3xix7IXABIOC6iPhMNv084LeAk4FNEbFccFusBZq6QrbO0TF5z8jzPhSp6JPm6n5ueF1S7cvqonlqFGdHxJMjf+8APhYRd0g6H7gIuHR0AUmnMEgSm4DngF2SvhARDwH7gXOBa4tsgNksdSenRZNFVXGWuZ2pFcK+71M9ijyPYgNwZ/Z6D/DOMfOcDNwdEc9GxGHgDgbJgYi4NyLuL7B+s8LqeqBRWZoszLpSkPb1li5F5E0UAeyWtFfS1mzaPcA52evzgBPHLLcfOFPSaklHA1smzDeRpK2SliUtP/HEE/MsapZbkXsajZu36v6HrhTaNtvoExqbOrHJ2/R0RkQclLQW2CPpPuB84GpJlwK3MWhaOkJE3CvpCmA38D1gH4N+jtwiYjuwHWBpaSnmWdasiKKFcVVXdI9+fhmPNl15hbibZdKRyl1vc9UoIuJg9vsQsJNB5/N9EbE5Ik4DbgIenrDs9RFxWkScBTwFPFBO6NZGKd16ui6pXAGdt8llWGMZ/bF+m1mjkHQMsCoinslebwY+KWltRByStAq4hMEIqHHLD+dbx6B/4vQS47cWqrvgSeFCtSLPh5i1vxYdCttV3gfly9P0dBywU9Jw/hsjYpekCyVty+a5BbgBQNIJwI6I2JK9d7Ok1cDzwLaIeDqb7x3A7wNrgNsl7YuIny1pu8yOUHUz0DwxjJoWzzzXOgznbapArKNwLnI1/WhTjZvX5jczUUTEI8DGMdOvAq4aM/0xBp3Ww7/PnPC5Oxk0Y5nVpu2FRN1t1mUVzlXEUWQdbfm+U+Ers3ukzQVkmfq4zYtIpSO1z1I5sXGi6An/01sqhY7NJ4Xvx4nCrAXK6ltJodDJq+kBCPaiIldmm1lBeYYL11lgNnlR18o4FtHH4dd1cI3CrGFlFGJlfEaRwrmpJq26r4rvKycKsxZrolBsunB2IqifE0VPuCPTivBx0m9OFD3if3Zrg6b7R+ylnCjMEtem2mDVcaa4zX3gRGHWAnU8oKdoQvK1Ot3lRGHWUYsU3C7QbRwnCjPrjLY00bWNL7gzs6QsWtvxI06r4xqFWUMmFWA+A/Y+SI1rFGYNmHaW29YzYPd7dJdrFGYd1cSw2qpuJeJk0ywnCrMOq6OALbNg9xDbNLnpycwWllIHspu+quMahZl1hpNCNVyjMGvAtALNhZ2lxjUKs4Y4IVhbuEZhZslwP0OaFBFNx5Db0tJSLC8vNx2GmY3wcNb0SdobEUuLLu+mJzMrxEmh+9z0ZGZmUzlRmJnZVE4UZmY2Va5EIemApG9K2idpOZu2UdJd2fTPS3rlhGUvlLRf0j2SPjoy/dWS9kh6MPv9Y6VskZmZlWqeGsXZEXHqSM/5DuDiiHgjsBO4aOUCkk4BLgA2ARuBt0s6KXv7YuDLEfEG4MvZ32ZmlpgiTU8bgDuz13uAd46Z52Tg7oh4NiIOA3cA52bvnQP8cfb6j4GfLxCLmZlVJG+iCGC3pL2StmbT7mFQ2AOcB5w4Zrn9wJmSVks6GtgyMt9xEfF49vpvgOPGrVjSVknLkpafeOKJnOGamVlZ8iaKMyLiTcBbgW2SzgLOBz4kaS9wLPDcyoUi4l7gCmA3sAvYB7wwZr5gkIxeIiK2R8RSRCytWbMmZ7hmZlaWXIkiIg5mvw8x6I/YFBH3RcTmiDgNuAl4eMKy10fEaRFxFvAU8ED21rclHQ+Q/T5UbFPMzKwKMxOFpGMkHTt8DWwG9ktam01bBVwCXDNh+eF86xj0T9yYvXUb8L7s9fuAP118M8zMrCp5buFxHLBT0nD+GyNiVzbsdVs2zy3ADQCSTgB2RMSW7L2bJa0Gnge2RcTT2fTLgT+R9AHgr4BfLGODusD3zjGzlPimgImZ9mQwJwszW0TRmwL6ymwzM5vKicLMzKZyojAzs6mcKMzMbConisT4UZBmlho/4S5BTgpmlhLXKMzMbConCjMzm8qJwszMpnKiMDOzqZwozMxsqlbd60nSEwxuINiU1wBPNrj+cRxTfinG5ZjySzGutsT0DyJi4Qf6tCpRNE3ScpEba1XBMeWXYlyOKb8U4+pLTG56MjOzqZwozMxsKieK+WxvOoAxHFN+KcblmPJLMa5exOQ+CjMzm8o1CjMzm8qJwszMpuptopD0h5IOSdo/Mu3VkvZIejD7/WMTll0nabekeyV9S9L6bLokXSbpgey9jyQQ089I+gtJ+yR9VdJJdcQk6exsncOfv5P089l7PynpbkkPSfqcpJclENNnJd0vaX/2+X9vnpiqimtknqslfTeFmJo6zmfEVOg4LxJXNt+Vku7J9sfVkpRNP03SN7Nj/YfTm4pJ0tGSbpd0X/be5bkCiYhe/gBnAW8C9o9MuxK4OHt9MXDFhGX/B/CW7PUrgKOz178M/BdgVfb32gRiegA4OXv9IeCP6oppZP5XA/93JKY/AX4pe30N8K8TiGkLoOznpnljqiqubNoS8F+B76YQU5PH+ZSYCh3nReIC/hnwP4EfyX7uAv559t7XgdOz4+rPgLc2GRNwNHB2Ns/LgD/PE9NcO7JrP8D6FV/A/cDx2evjgfvHLPMPga9O+LyvAyclFtP9wD/NXn8c+FQdMa1Yfivw2ey1GFw1elT2908BX2oypjHv/SpwWV3f37S4sn/yr2TLzp0oKoqpkeN8RkyFj/NF48qO4b3A32dQEC8DJ2fz3zcy37uAa5uMacx8VwEXzIqht01PExwXEY9nr/8GOG7MPBuApyXdIul/S/q0pB/J3ns98C8lLUv6M0lvSCCmDwJflPQo8B4gX1WzeEyjfonBWTrAauDpiDic/f0o8BMNx/RDWZPTe4BdJcRURlwfBm4b+YwUYmrqOJ8WUxXHea64IuIuBsn88eznSxFxL4Pj+tGRWWs71qfE9EOSXgX8HPDlWSt0opggBul23Njho4AzgY8B/wR4HfD+7L2XA38Xg8vnrwP+MIGYfhXYEhGvBW4AfremmACQdDzwRuBLZa63wpj+E3BnRPx503FJOgE4D/j9smNZNKZMU8f5tJgqPc6nxZX1h5wMvJZBIvhpSWeWvf4yY5J0FINEe3VEPDJrPU4UR/p2dhAOD8ZDY+Z5FNgXEY9kZ8W3MmhDHL53S/Z6J/CPmoxJ0hpgY0Tcnc33OQZtl3XENPSLwM6IeD77+/8Ar8oOVBgcyAcbjolsud8E1gD/toR4yojrHwMnAQ9JOgAcLemhhmOC5o7zsTFVeJznjesdwNci4rsR8V0GfRE/xeC4fu3IfHUe65NiGtoOPBgRn8mzQieKI90GvC97/T7gT8fM878YFHTDOzH+NPCt7PWtwNnZ6zcz6GBrMqangB+VtCGb/hbg3jHLVxHT0LsYaSLIzoC+AvxCzuUrjwlA0geBnwXeFRE/KCGewnFFxO0R8eMRsT4i1gPPRsTco3nKjClzK80c55Niquo4zxvXXwNvlnRU1nT5ZuDerHnoO5JOz0Y7vXfC8rXFBCDpPwI/Cnw09xoX6fDpwg+DA+1x4HkGZ0gfYNB+/mXgQeC/A6/O5l0Cdows+xbgL4FvAn8EvCyb/irg9mz6XQzOcpqO6R3ZtG8wGBn1uhpjWs/gDGrVis98HYMO0YeA/wa8PIGYDgMPA/uyn9+o+ZgaG9eKz19k1FMV+6rJ43xSTIWO8yJxMRhwcC2DgvhbwO+OfOYSsD87tv6A7G4YTcXEoFYT2fThsf7BWXH4Fh5mZjaVm57MzGwqJwozM5vKicLMzKZyojAzs6mcKMzMbConCjMzm8qJwszMpvr/6xks8ka+jVYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "pl.scatter(trips[\"start_station_longitude\"], trips[\"start_station_latitude\"])\n", "pl.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see if we can find information about how popular the different start stations are" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 620\n", "1 422\n", "2 424\n", "3 446\n", "4 514\n", " ... \n", "190000 415\n", "190001 460\n", "190002 399\n", "190003 465\n", "190004 412\n", "Name: start_station_id, Length: 190005, dtype: int64" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trips[\"start_station_id\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's first try the numpy-way:" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "stations = pl.unique(trips[\"start_station_id\"])" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 377, 378, 380, 381, 382, 383, 384, 385, 387, 388, 389,\n", " 390, 391, 392, 393, 394, 396, 397, 398, 399, 400, 401,\n", " 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412,\n", " 413, 414, 415, 416, 417, 418, 420, 421, 422, 423, 424,\n", " 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435,\n", " 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446,\n", " 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457,\n", " 458, 459, 460, 461, 462, 463, 464, 465, 466, 468, 469,\n", " 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480,\n", " 481, 482, 483, 484, 486, 487, 488, 489, 491, 493, 494,\n", " 495, 496, 497, 498, 499, 500, 501, 502, 503, 505, 506,\n", " 507, 508, 509, 511, 512, 513, 514, 516, 518, 519, 521,\n", " 522, 523, 524, 525, 526, 527, 529, 530, 531, 532, 533,\n", " 534, 535, 536, 537, 540, 541, 542, 543, 545, 547, 548,\n", " 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,\n", " 560, 561, 562, 563, 564, 565, 567, 568, 569, 570, 572,\n", " 573, 574, 575, 577, 578, 579, 580, 581, 582, 583, 584,\n", " 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595,\n", " 596, 597, 598, 599, 600, 601, 602, 603, 605, 606, 607,\n", " 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618,\n", " 619, 620, 621, 622, 623, 624, 625, 626, 627, 735, 737,\n", " 738, 739, 742, 744, 746, 748, 787, 970, 1009, 1023, 1101,\n", " 1755, 1919, 2270, 2280, 2304, 2305, 2306, 2307, 2308, 2309, 2315])" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stations" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 False\n", "1 False\n", "2 False\n", "3 False\n", "4 False\n", " ... \n", "190000 False\n", "190001 False\n", "190002 False\n", "190003 False\n", "190004 False\n", "Name: start_station_id, Length: 190005, dtype: bool" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" } ], "source": [ "stations[0] == trips[\n", " \"start_station_id\"\n", "] # find out if trips started at the given station" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "680" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(\n", " stations[0] == trips[\"start_station_id\"]\n", ").sum() # sum all trips that started at the given station" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we generalize the line above to create a list of number of trips for each station" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "number_of_trips = [\n", " (stations[i] == trips[\"start_station_id\"]).sum() for i in range(len(stations))\n", "]" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[680,\n", " 562,\n", " 1097,\n", " 927,\n", " 603,\n", " 1115,\n", " 1745,\n", " 1450,\n", " 585,\n", " 628,\n", " 400,\n", " 1134,\n", " 1431,\n", " 606,\n", " 822,\n", " 994,\n", " 1391,\n", " 1592,\n", " 2308,\n", " 777,\n", " 981,\n", " 490,\n", " 889,\n", " 818,\n", " 772,\n", " 365,\n", " 855,\n", " 1020,\n", " 2189,\n", " 573,\n", " 1004,\n", " 724,\n", " 1217,\n", " 1548,\n", " 684,\n", " 316,\n", " 578,\n", " 674,\n", " 427,\n", " 950,\n", " 2831,\n", " 690,\n", " 1278,\n", " 1411,\n", " 430,\n", " 1050,\n", " 597,\n", " 285,\n", " 376,\n", " 629,\n", " 813,\n", " 417,\n", " 613,\n", " 855,\n", " 814,\n", " 838,\n", " 936,\n", " 1340,\n", " 823,\n", " 1355,\n", " 217,\n", " 1188,\n", " 1495,\n", " 1739,\n", " 200,\n", " 2038,\n", " 1386,\n", " 622,\n", " 515,\n", " 908,\n", " 585,\n", " 659,\n", " 666,\n", " 96,\n", " 743,\n", " 665,\n", " 675,\n", " 836,\n", " 536,\n", " 1572,\n", " 369,\n", " 1045,\n", " 788,\n", " 1606,\n", " 1082,\n", " 281,\n", " 964,\n", " 658,\n", " 582,\n", " 324,\n", " 512,\n", " 567,\n", " 578,\n", " 590,\n", " 993,\n", " 644,\n", " 1632,\n", " 1344,\n", " 1947,\n", " 454,\n", " 243,\n", " 548,\n", " 765,\n", " 588,\n", " 784,\n", " 703,\n", " 1717,\n", " 461,\n", " 1437,\n", " 677,\n", " 671,\n", " 755,\n", " 565,\n", " 211,\n", " 1532,\n", " 728,\n", " 433,\n", " 1046,\n", " 1213,\n", " 565,\n", " 599,\n", " 1257,\n", " 380,\n", " 313,\n", " 1053,\n", " 914,\n", " 332,\n", " 881,\n", " 442,\n", " 568,\n", " 1086,\n", " 1320,\n", " 533,\n", " 466,\n", " 337,\n", " 814,\n", " 896,\n", " 479,\n", " 428,\n", " 794,\n", " 302,\n", " 269,\n", " 350,\n", " 556,\n", " 790,\n", " 282,\n", " 1179,\n", " 769,\n", " 377,\n", " 848,\n", " 582,\n", " 323,\n", " 418,\n", " 508,\n", " 904,\n", " 197,\n", " 2199,\n", " 478,\n", " 850,\n", " 477,\n", " 478,\n", " 507,\n", " 1356,\n", " 837,\n", " 494,\n", " 74,\n", " 716,\n", " 835,\n", " 785,\n", " 1116,\n", " 132,\n", " 633,\n", " 528,\n", " 469,\n", " 179,\n", " 585,\n", " 67,\n", " 623,\n", " 801,\n", " 344,\n", " 781,\n", " 1339,\n", " 1155,\n", " 894,\n", " 1440,\n", " 851,\n", " 630,\n", " 628,\n", " 622,\n", " 634,\n", " 168,\n", " 355,\n", " 1147,\n", " 81,\n", " 267,\n", " 207,\n", " 426,\n", " 143,\n", " 498,\n", " 934,\n", " 1487,\n", " 493,\n", " 719,\n", " 179,\n", " 159,\n", " 1096,\n", " 301,\n", " 215,\n", " 2132,\n", " 680,\n", " 477,\n", " 563,\n", " 826,\n", " 467,\n", " 480,\n", " 797,\n", " 349,\n", " 298,\n", " 769,\n", " 617,\n", " 547,\n", " 2056,\n", " 460,\n", " 561,\n", " 931,\n", " 704,\n", " 721,\n", " 274,\n", " 126,\n", " 1026,\n", " 1126,\n", " 311,\n", " 929,\n", " 532,\n", " 767,\n", " 193,\n", " 417,\n", " 760,\n", " 573,\n", " 117,\n", " 869,\n", " 153,\n", " 1203,\n", " 88,\n", " 331,\n", " 403,\n", " 425,\n", " 576,\n", " 170,\n", " 604,\n", " 342,\n", " 214,\n", " 838]" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "number_of_trips" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's try some pandas:\n", "For the only purpose of counting trips per station we may use .value_counts()" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "number_of_trips_pandas = trips[\"start_station_id\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "421 2831\n", "398 2308\n", "551 2199\n", "408 2189\n", "607 2132\n", " ... \n", "454 96\n", "1919 88\n", "591 81\n", "560 74\n", "573 67\n", "Name: start_station_id, Length: 253, dtype: int64" ] }, "execution_count": 56, "metadata": {}, "output_type": "execute_result" } ], "source": [ "number_of_trips_pandas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's say in our case we want all the information we can get about the start station, not only the number of trips. To group the data by start_station_id and count, while still extracting other relevant data for the start station we can use groupby()" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
started_atended_atdurationend_station_idend_station_nameend_station_descriptionend_station_latitudeend_station_longitude
start_station_idstart_station_namestart_station_descriptionstart_station_latitudestart_station_longitude
377Tøyenparkenved Caltexløkka59.91566710.777566680680680680680680680680
378Colosseum Kinolangs Fridtjof Nansens vei59.92984310.711285562562562562562562562562
380Bentsebrugatarett over busstoppet59.93923010.75917010971097109710971097109710971097
381Grønlands torgved Tøyenbekken59.91252010.762240927927927927927927927927
382Stensgataved trikkestoppet59.92958610.732839603603603603603603603603
.......................................
2306Økern Portalved Dag Hammarskjölds vei59.93097210.801830170170170170170170170170
2307Domus Athleticaved Vestgrensa Studentby59.94621910.724626604604604604604604604604
2308Guneriusmotsatt side av Torggata fra Gunerius bygget59.91463810.753428342342342342342342342342
2309Ulven Torgved ulvenveien59.92496010.812061214214214214214214214214
2315Rostockgataved Operagata59.90689010.760307838838838838838838838838
\n", "

254 rows × 8 columns

\n", "
" ], "text/plain": [ " started_at \\\n", "start_station_id start_station_name start_station_description start_station_latitude start_station_longitude \n", "377 Tøyenparken ved Caltexløkka 59.915667 10.777566 680 \n", "378 Colosseum Kino langs Fridtjof Nansens vei 59.929843 10.711285 562 \n", "380 Bentsebrugata rett over busstoppet 59.939230 10.759170 1097 \n", "381 Grønlands torg ved Tøyenbekken 59.912520 10.762240 927 \n", "382 Stensgata ved trikkestoppet 59.929586 10.732839 603 \n", "... ... \n", "2306 Økern Portal ved Dag Hammarskjölds vei 59.930972 10.801830 170 \n", "2307 Domus Athletica ved Vestgrensa Studentby 59.946219 10.724626 604 \n", "2308 Gunerius motsatt side av Torggata fra Gunerius bygget 59.914638 10.753428 342 \n", "2309 Ulven Torg ved ulvenveien 59.924960 10.812061 214 \n", "2315 Rostockgata ved Operagata 59.906890 10.760307 838 \n", "\n", " ended_at \\\n", "start_station_id start_station_name start_station_description start_station_latitude start_station_longitude \n", "377 Tøyenparken ved Caltexløkka 59.915667 10.777566 680 \n", "378 Colosseum Kino langs Fridtjof Nansens vei 59.929843 10.711285 562 \n", "380 Bentsebrugata rett over busstoppet 59.939230 10.759170 1097 \n", "381 Grønlands torg ved Tøyenbekken 59.912520 10.762240 927 \n", "382 Stensgata ved trikkestoppet 59.929586 10.732839 603 \n", "... ... \n", "2306 Økern Portal ved Dag Hammarskjölds vei 59.930972 10.801830 170 \n", "2307 Domus Athletica ved Vestgrensa Studentby 59.946219 10.724626 604 \n", "2308 Gunerius motsatt side av Torggata fra Gunerius bygget 59.914638 10.753428 342 \n", "2309 Ulven Torg ved ulvenveien 59.924960 10.812061 214 \n", "2315 Rostockgata ved Operagata 59.906890 10.760307 838 \n", "\n", " duration \\\n", "start_station_id start_station_name start_station_description start_station_latitude start_station_longitude \n", "377 Tøyenparken ved Caltexløkka 59.915667 10.777566 680 \n", "378 Colosseum Kino langs Fridtjof Nansens vei 59.929843 10.711285 562 \n", "380 Bentsebrugata rett over busstoppet 59.939230 10.759170 1097 \n", "381 Grønlands torg ved Tøyenbekken 59.912520 10.762240 927 \n", "382 Stensgata ved trikkestoppet 59.929586 10.732839 603 \n", "... ... \n", "2306 Økern Portal ved Dag Hammarskjölds vei 59.930972 10.801830 170 \n", "2307 Domus Athletica ved Vestgrensa Studentby 59.946219 10.724626 604 \n", "2308 Gunerius motsatt side av Torggata fra Gunerius bygget 59.914638 10.753428 342 \n", "2309 Ulven Torg ved ulvenveien 59.924960 10.812061 214 \n", "2315 Rostockgata ved Operagata 59.906890 10.760307 838 \n", "\n", " end_station_id \\\n", "start_station_id start_station_name start_station_description start_station_latitude start_station_longitude \n", "377 Tøyenparken ved Caltexløkka 59.915667 10.777566 680 \n", "378 Colosseum Kino langs Fridtjof Nansens vei 59.929843 10.711285 562 \n", "380 Bentsebrugata rett over busstoppet 59.939230 10.759170 1097 \n", "381 Grønlands torg ved Tøyenbekken 59.912520 10.762240 927 \n", "382 Stensgata ved trikkestoppet 59.929586 10.732839 603 \n", "... ... \n", "2306 Økern Portal ved Dag Hammarskjölds vei 59.930972 10.801830 170 \n", "2307 Domus Athletica ved Vestgrensa Studentby 59.946219 10.724626 604 \n", "2308 Gunerius motsatt side av Torggata fra Gunerius bygget 59.914638 10.753428 342 \n", "2309 Ulven Torg ved ulvenveien 59.924960 10.812061 214 \n", "2315 Rostockgata ved Operagata 59.906890 10.760307 838 \n", "\n", " end_station_name \\\n", "start_station_id start_station_name start_station_description start_station_latitude start_station_longitude \n", "377 Tøyenparken ved Caltexløkka 59.915667 10.777566 680 \n", "378 Colosseum Kino langs Fridtjof Nansens vei 59.929843 10.711285 562 \n", "380 Bentsebrugata rett over busstoppet 59.939230 10.759170 1097 \n", "381 Grønlands torg ved Tøyenbekken 59.912520 10.762240 927 \n", "382 Stensgata ved trikkestoppet 59.929586 10.732839 603 \n", "... ... \n", "2306 Økern Portal ved Dag Hammarskjölds vei 59.930972 10.801830 170 \n", "2307 Domus Athletica ved Vestgrensa Studentby 59.946219 10.724626 604 \n", "2308 Gunerius motsatt side av Torggata fra Gunerius bygget 59.914638 10.753428 342 \n", "2309 Ulven Torg ved ulvenveien 59.924960 10.812061 214 \n", "2315 Rostockgata ved Operagata 59.906890 10.760307 838 \n", "\n", " end_station_description \\\n", "start_station_id start_station_name start_station_description start_station_latitude start_station_longitude \n", "377 Tøyenparken ved Caltexløkka 59.915667 10.777566 680 \n", "378 Colosseum Kino langs Fridtjof Nansens vei 59.929843 10.711285 562 \n", "380 Bentsebrugata rett over busstoppet 59.939230 10.759170 1097 \n", "381 Grønlands torg ved Tøyenbekken 59.912520 10.762240 927 \n", "382 Stensgata ved trikkestoppet 59.929586 10.732839 603 \n", "... ... \n", "2306 Økern Portal ved Dag Hammarskjölds vei 59.930972 10.801830 170 \n", "2307 Domus Athletica ved Vestgrensa Studentby 59.946219 10.724626 604 \n", "2308 Gunerius motsatt side av Torggata fra Gunerius bygget 59.914638 10.753428 342 \n", "2309 Ulven Torg ved ulvenveien 59.924960 10.812061 214 \n", "2315 Rostockgata ved Operagata 59.906890 10.760307 838 \n", "\n", " end_station_latitude \\\n", "start_station_id start_station_name start_station_description start_station_latitude start_station_longitude \n", "377 Tøyenparken ved Caltexløkka 59.915667 10.777566 680 \n", "378 Colosseum Kino langs Fridtjof Nansens vei 59.929843 10.711285 562 \n", "380 Bentsebrugata rett over busstoppet 59.939230 10.759170 1097 \n", "381 Grønlands torg ved Tøyenbekken 59.912520 10.762240 927 \n", "382 Stensgata ved trikkestoppet 59.929586 10.732839 603 \n", "... ... \n", "2306 Økern Portal ved Dag Hammarskjölds vei 59.930972 10.801830 170 \n", "2307 Domus Athletica ved Vestgrensa Studentby 59.946219 10.724626 604 \n", "2308 Gunerius motsatt side av Torggata fra Gunerius bygget 59.914638 10.753428 342 \n", "2309 Ulven Torg ved ulvenveien 59.924960 10.812061 214 \n", "2315 Rostockgata ved Operagata 59.906890 10.760307 838 \n", "\n", " end_station_longitude \n", "start_station_id start_station_name start_station_description start_station_latitude start_station_longitude \n", "377 Tøyenparken ved Caltexløkka 59.915667 10.777566 680 \n", "378 Colosseum Kino langs Fridtjof Nansens vei 59.929843 10.711285 562 \n", "380 Bentsebrugata rett over busstoppet 59.939230 10.759170 1097 \n", "381 Grønlands torg ved Tøyenbekken 59.912520 10.762240 927 \n", "382 Stensgata ved trikkestoppet 59.929586 10.732839 603 \n", "... ... \n", "2306 Økern Portal ved Dag Hammarskjölds vei 59.930972 10.801830 170 \n", "2307 Domus Athletica ved Vestgrensa Studentby 59.946219 10.724626 604 \n", "2308 Gunerius motsatt side av Torggata fra Gunerius bygget 59.914638 10.753428 342 \n", "2309 Ulven Torg ved ulvenveien 59.924960 10.812061 214 \n", "2315 Rostockgata ved Operagata 59.906890 10.760307 838 \n", "\n", "[254 rows x 8 columns]" ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "station_data = trips.groupby(\n", " [\n", " \"start_station_id\",\n", " \"start_station_name\",\n", " \"start_station_description\",\n", " \"start_station_latitude\",\n", " \"start_station_longitude\",\n", " ]\n", ").count()\n", "station_data" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_station_idstart_station_namestart_station_descriptionstart_station_latitudestart_station_longitudestarted_atended_atdurationend_station_idend_station_nameend_station_descriptionend_station_latitudeend_station_longitude
0377Tøyenparkenved Caltexløkka59.91566710.777566680680680680680680680680
1378Colosseum Kinolangs Fridtjof Nansens vei59.92984310.711285562562562562562562562562
2380Bentsebrugatarett over busstoppet59.93923010.75917010971097109710971097109710971097
3381Grønlands torgved Tøyenbekken59.91252010.762240927927927927927927927927
4382Stensgataved trikkestoppet59.92958610.732839603603603603603603603603
..........................................
2492306Økern Portalved Dag Hammarskjölds vei59.93097210.801830170170170170170170170170
2502307Domus Athleticaved Vestgrensa Studentby59.94621910.724626604604604604604604604604
2512308Guneriusmotsatt side av Torggata fra Gunerius bygget59.91463810.753428342342342342342342342342
2522309Ulven Torgved ulvenveien59.92496010.812061214214214214214214214214
2532315Rostockgataved Operagata59.90689010.760307838838838838838838838838
\n", "

254 rows × 13 columns

\n", "
" ], "text/plain": [ " start_station_id start_station_name \\\n", "0 377 Tøyenparken \n", "1 378 Colosseum Kino \n", "2 380 Bentsebrugata \n", "3 381 Grønlands torg \n", "4 382 Stensgata \n", ".. ... ... \n", "249 2306 Økern Portal \n", "250 2307 Domus Athletica \n", "251 2308 Gunerius \n", "252 2309 Ulven Torg \n", "253 2315 Rostockgata \n", "\n", " start_station_description start_station_latitude \\\n", "0 ved Caltexløkka 59.915667 \n", "1 langs Fridtjof Nansens vei 59.929843 \n", "2 rett over busstoppet 59.939230 \n", "3 ved Tøyenbekken 59.912520 \n", "4 ved trikkestoppet 59.929586 \n", ".. ... ... \n", "249 ved Dag Hammarskjölds vei 59.930972 \n", "250 ved Vestgrensa Studentby 59.946219 \n", "251 motsatt side av Torggata fra Gunerius bygget 59.914638 \n", "252 ved ulvenveien 59.924960 \n", "253 ved Operagata 59.906890 \n", "\n", " start_station_longitude started_at ended_at duration end_station_id \\\n", "0 10.777566 680 680 680 680 \n", "1 10.711285 562 562 562 562 \n", "2 10.759170 1097 1097 1097 1097 \n", "3 10.762240 927 927 927 927 \n", "4 10.732839 603 603 603 603 \n", ".. ... ... ... ... ... \n", "249 10.801830 170 170 170 170 \n", "250 10.724626 604 604 604 604 \n", "251 10.753428 342 342 342 342 \n", "252 10.812061 214 214 214 214 \n", "253 10.760307 838 838 838 838 \n", "\n", " end_station_name end_station_description end_station_latitude \\\n", "0 680 680 680 \n", "1 562 562 562 \n", "2 1097 1097 1097 \n", "3 927 927 927 \n", "4 603 603 603 \n", ".. ... ... ... \n", "249 170 170 170 \n", "250 604 604 604 \n", "251 342 342 342 \n", "252 214 214 214 \n", "253 838 838 838 \n", "\n", " end_station_longitude \n", "0 680 \n", "1 562 \n", "2 1097 \n", "3 927 \n", "4 603 \n", ".. ... \n", "249 170 \n", "250 604 \n", "251 342 \n", "252 214 \n", "253 838 \n", "\n", "[254 rows x 13 columns]" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "station_data = station_data.reset_index()\n", "station_data" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_station_idstart_station_namestart_station_descriptionstart_station_latitudestart_station_longitudestarted_at
0377Tøyenparkenved Caltexløkka59.91566710.777566680
1378Colosseum Kinolangs Fridtjof Nansens vei59.92984310.711285562
2380Bentsebrugatarett over busstoppet59.93923010.7591701097
3381Grønlands torgved Tøyenbekken59.91252010.762240927
4382Stensgataved trikkestoppet59.92958610.732839603
.....................
2492306Økern Portalved Dag Hammarskjölds vei59.93097210.801830170
2502307Domus Athleticaved Vestgrensa Studentby59.94621910.724626604
2512308Guneriusmotsatt side av Torggata fra Gunerius bygget59.91463810.753428342
2522309Ulven Torgved ulvenveien59.92496010.812061214
2532315Rostockgataved Operagata59.90689010.760307838
\n", "

254 rows × 6 columns

\n", "
" ], "text/plain": [ " start_station_id start_station_name \\\n", "0 377 Tøyenparken \n", "1 378 Colosseum Kino \n", "2 380 Bentsebrugata \n", "3 381 Grønlands torg \n", "4 382 Stensgata \n", ".. ... ... \n", "249 2306 Økern Portal \n", "250 2307 Domus Athletica \n", "251 2308 Gunerius \n", "252 2309 Ulven Torg \n", "253 2315 Rostockgata \n", "\n", " start_station_description start_station_latitude \\\n", "0 ved Caltexløkka 59.915667 \n", "1 langs Fridtjof Nansens vei 59.929843 \n", "2 rett over busstoppet 59.939230 \n", "3 ved Tøyenbekken 59.912520 \n", "4 ved trikkestoppet 59.929586 \n", ".. ... ... \n", "249 ved Dag Hammarskjölds vei 59.930972 \n", "250 ved Vestgrensa Studentby 59.946219 \n", "251 motsatt side av Torggata fra Gunerius bygget 59.914638 \n", "252 ved ulvenveien 59.924960 \n", "253 ved Operagata 59.906890 \n", "\n", " start_station_longitude started_at \n", "0 10.777566 680 \n", "1 10.711285 562 \n", "2 10.759170 1097 \n", "3 10.762240 927 \n", "4 10.732839 603 \n", ".. ... ... \n", "249 10.801830 170 \n", "250 10.724626 604 \n", "251 10.753428 342 \n", "252 10.812061 214 \n", "253 10.760307 838 \n", "\n", "[254 rows x 6 columns]" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "station_data = station_data.drop(columns=station_data.columns[-7:])\n", "station_data" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_station_namestart_station_descriptionstart_station_latitudestart_station_longitudestarted_trips
start_station_id
377Tøyenparkenved Caltexløkka59.91566710.777566680
378Colosseum Kinolangs Fridtjof Nansens vei59.92984310.711285562
380Bentsebrugatarett over busstoppet59.93923010.7591701097
381Grønlands torgved Tøyenbekken59.91252010.762240927
382Stensgataved trikkestoppet59.92958610.732839603
..................
2306Økern Portalved Dag Hammarskjölds vei59.93097210.801830170
2307Domus Athleticaved Vestgrensa Studentby59.94621910.724626604
2308Guneriusmotsatt side av Torggata fra Gunerius bygget59.91463810.753428342
2309Ulven Torgved ulvenveien59.92496010.812061214
2315Rostockgataved Operagata59.90689010.760307838
\n", "

254 rows × 5 columns

\n", "
" ], "text/plain": [ " start_station_name \\\n", "start_station_id \n", "377 Tøyenparken \n", "378 Colosseum Kino \n", "380 Bentsebrugata \n", "381 Grønlands torg \n", "382 Stensgata \n", "... ... \n", "2306 Økern Portal \n", "2307 Domus Athletica \n", "2308 Gunerius \n", "2309 Ulven Torg \n", "2315 Rostockgata \n", "\n", " start_station_description \\\n", "start_station_id \n", "377 ved Caltexløkka \n", "378 langs Fridtjof Nansens vei \n", "380 rett over busstoppet \n", "381 ved Tøyenbekken \n", "382 ved trikkestoppet \n", "... ... \n", "2306 ved Dag Hammarskjölds vei \n", "2307 ved Vestgrensa Studentby \n", "2308 motsatt side av Torggata fra Gunerius bygget \n", "2309 ved ulvenveien \n", "2315 ved Operagata \n", "\n", " start_station_latitude start_station_longitude \\\n", "start_station_id \n", "377 59.915667 10.777566 \n", "378 59.929843 10.711285 \n", "380 59.939230 10.759170 \n", "381 59.912520 10.762240 \n", "382 59.929586 10.732839 \n", "... ... ... \n", "2306 59.930972 10.801830 \n", "2307 59.946219 10.724626 \n", "2308 59.914638 10.753428 \n", "2309 59.924960 10.812061 \n", "2315 59.906890 10.760307 \n", "\n", " started_trips \n", "start_station_id \n", "377 680 \n", "378 562 \n", "380 1097 \n", "381 927 \n", "382 603 \n", "... ... \n", "2306 170 \n", "2307 604 \n", "2308 342 \n", "2309 214 \n", "2315 838 \n", "\n", "[254 rows x 5 columns]" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "station_data = station_data.rename(columns={\"started_at\": \"started_trips\"})\n", "station_data = station_data.set_index(\"start_station_id\")\n", "station_data" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_station_namestart_station_descriptionstart_station_latitudestart_station_longitudestarted_trips
start_station_id
421Alexander Kiellands Plasslangs Maridalsveien59.92806710.7512032831
398Ringnes Parkved Sannergata59.92843410.7594302308
551Olaf Ryes plasslangs Sofienberggata59.92242510.7581822198
408Tøyen skoleforsiden av skolebygget59.91494310.7739772189
607Marcus Thranes gateved Akerselva59.93277210.7585952132
..................
454Furulundlangs Vækerøveien59.91981010.65111896
1919KværnerveienVed Kværnerveien 559.90591110.77859288
591Grenseveienved Togbru59.92464510.78172781
560Gaustad T-banelangs Slemdalsveien59.94595510.71039274
573Tordenskiolds gateved Rådhusgata59.91177610.73511367
\n", "

254 rows × 5 columns

\n", "
" ], "text/plain": [ " start_station_name start_station_description \\\n", "start_station_id \n", "421 Alexander Kiellands Plass langs Maridalsveien \n", "398 Ringnes Park ved Sannergata \n", "551 Olaf Ryes plass langs Sofienberggata \n", "408 Tøyen skole forsiden av skolebygget \n", "607 Marcus Thranes gate ved Akerselva \n", "... ... ... \n", "454 Furulund langs Vækerøveien \n", "1919 Kværnerveien Ved Kværnerveien 5 \n", "591 Grenseveien ved Togbru \n", "560 Gaustad T-bane langs Slemdalsveien \n", "573 Tordenskiolds gate ved Rådhusgata \n", "\n", " start_station_latitude start_station_longitude \\\n", "start_station_id \n", "421 59.928067 10.751203 \n", "398 59.928434 10.759430 \n", "551 59.922425 10.758182 \n", "408 59.914943 10.773977 \n", "607 59.932772 10.758595 \n", "... ... ... \n", "454 59.919810 10.651118 \n", "1919 59.905911 10.778592 \n", "591 59.924645 10.781727 \n", "560 59.945955 10.710392 \n", "573 59.911776 10.735113 \n", "\n", " started_trips \n", "start_station_id \n", "421 2831 \n", "398 2308 \n", "551 2198 \n", "408 2189 \n", "607 2132 \n", "... ... \n", "454 96 \n", "1919 88 \n", "591 81 \n", "560 74 \n", "573 67 \n", "\n", "[254 rows x 5 columns]" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "station_data.sort_values(\"started_trips\", ascending=False)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "421 2818\n", "551 2702\n", "443 2676\n", "489 2644\n", "480 2479\n", " ... \n", "591 80\n", "1919 71\n", "498 60\n", "560 51\n", "601 43\n", "Name: end_station_id, Length: 253, dtype: int64" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ended_trips = trips[\"end_station_id\"].value_counts()\n", "ended_trips" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
start_station_namestart_station_descriptionstart_station_latitudestart_station_longitudestarted_tripsended_trips
start_station_id
421Alexander Kiellands Plasslangs Maridalsveien59.92806710.75120328312818
398Ringnes Parkved Sannergata59.92843410.75943023082308
551Olaf Ryes plasslangs Sofienberggata59.92242510.75818221982702
408Tøyen skoleforsiden av skolebygget59.91494310.77397721892183
607Marcus Thranes gateved Akerselva59.93277210.75859521321607
.....................
454Furulundlangs Vækerøveien59.91981010.6511189685
1919KværnerveienVed Kværnerveien 559.90591110.7785928871
591Grenseveienved Togbru59.92464510.7817278180
560Gaustad T-banelangs Slemdalsveien59.94595510.7103927451
573Tordenskiolds gateved Rådhusgata59.91177610.73511367124
\n", "

254 rows × 6 columns

\n", "
" ], "text/plain": [ " start_station_name start_station_description \\\n", "start_station_id \n", "421 Alexander Kiellands Plass langs Maridalsveien \n", "398 Ringnes Park ved Sannergata \n", "551 Olaf Ryes plass langs Sofienberggata \n", "408 Tøyen skole forsiden av skolebygget \n", "607 Marcus Thranes gate ved Akerselva \n", "... ... ... \n", "454 Furulund langs Vækerøveien \n", "1919 Kværnerveien Ved Kværnerveien 5 \n", "591 Grenseveien ved Togbru \n", "560 Gaustad T-bane langs Slemdalsveien \n", "573 Tordenskiolds gate ved Rådhusgata \n", "\n", " start_station_latitude start_station_longitude \\\n", "start_station_id \n", "421 59.928067 10.751203 \n", "398 59.928434 10.759430 \n", "551 59.922425 10.758182 \n", "408 59.914943 10.773977 \n", "607 59.932772 10.758595 \n", "... ... ... \n", "454 59.919810 10.651118 \n", "1919 59.905911 10.778592 \n", "591 59.924645 10.781727 \n", "560 59.945955 10.710392 \n", "573 59.911776 10.735113 \n", "\n", " started_trips ended_trips \n", "start_station_id \n", "421 2831 2818 \n", "398 2308 2308 \n", "551 2198 2702 \n", "408 2189 2183 \n", "607 2132 1607 \n", "... ... ... \n", "454 96 85 \n", "1919 88 71 \n", "591 81 80 \n", "560 74 51 \n", "573 67 124 \n", "\n", "[254 rows x 6 columns]" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "station_data[\"ended_trips\"] = ended_trips\n", "station_data.sort_values(\"started_trips\", ascending=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotting on a map with ipyleaflet and HTML" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We saw that the scatterplot could be used to plot stations on a map:" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEHCAYAAAB8yTv9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABA9UlEQVR4nO2de5gcZZXwf6d7MpOQKwwkXJIhYoySAIkwEthAlKCoGFAhsJ/ExRvES0B0JcDuigion1x0FUGRiygK+wlBSLiIIAQwAaMTnYQkIEQXIYmCRBKYEObSfb4/qnpS3VPdXdVd1V09c37PM8901/VUTc176lzec0RVMQzDMIw4SNVbAMMwDGPwYkrGMAzDiA1TMoZhGEZsmJIxDMMwYsOUjGEYhhEbTfUWoFbsueeeOnny5HqLYRiG0VCsXr36ZVXdq9L9h4ySmTx5Mh0dHfUWwzAMo6EQkb9Ws7+5ywzDMIzYMCVjGIZhxIYpGcMwDCM2TMkYhmEYsWFKxjAMw4gNUzKGYVTE1q5u1rywja1d3fUWxUgwQyaF2TCM6FjauZnz71jLsFSK3myWy08+hBNn7ldvsYwEYpaMYRih2NrVzfl3rOWN3iyvdffxRm+W8+5YG9qiMUtoaGCWjGEYgDPob3plJxN3H0HrqJai2216ZSfDUineINu/bFgqxaZXdpbcz4tZQkMHUzKGYYQa9CfuPoLebDZvWW82y8TdRwQ6l9cSyimq8+5Yy+wpewZWUkbjYO4ywxjihHV/tY5q4fKTD2H4sBSjW5oYPizF5ScfElhB5CwhLzlLyBh8mCVjGEOcStxfJ87cj9lT9gzkXiukWkvIaCzMkjGMIU6lg37rqBZmTBoX2sVVrSVkNBZmyRjGECc36J9XEJOJc9CvxhIyGgtTMoZh1GXQbx3VYsplCGBKxjAMwAZ9Ix4sJmMYhmHERuxKRkSeE5EnRaRTRDrcZTNE5Al3+d0iMqbIvueIyDoRWS8iX/As/6qIbHaP2Skix8d9HYZhGEZ4amXJHKOqM1W13f1+A3CBqh4M3AksLtxBRA4CzgQOB2YA80RkimeT/3aPOVNV74tZfsMwDKMC6uUumwo85n5+EDjZZ5sDgVWq+rqq9gGPAifVSD7DMAwjAmqhZBR4QERWi8hCd9l64IPu51OAST77rQOOFpFWEdkNOL5gu7NEZK2I/EhEdo9LeMMwaoMVzByc1CK77ChV3Swi44EHReRp4JPAVSJyIbAM6CncSVWfEpHLgAeAHUAnkHFX/wC4FEeBXQp8yz1mHq5SWwjQ1tYW8WUZhhEVVjBz8BK7JaOqm93fL+HEXw5X1adV9ThVPQz4H+DPRfa9UVUPU9U5wCvAM+7yF1U1o6pZ4HqcuI3f/teparuqtu+1117RX5xhGFUTVesAI5nEqmREZKSIjM59Bo4D1rlWDSKSAr4MXFtk/9x2bTjxmFvd7/t4NvswjmvNMIwGxApmDm7idpdNAO4Ukdy5blXV+93U5EXuNr8AbgIQkX2BG1Q1l5J8h4i0Ar3AIlXd5i6/XERm4rjLngM+HfN1GIYRE1Ywc3AjqlpvGWpCe3u7dnR01FsMwzB8WNa5eUDtNIvJJAMRWe2ZfhIaKytjGEbdsYKZgxdTMoZRR4K2PB4KWO20wYkpGcOoE5a2awwFrECmYdQBS9utHJu02ViYJWMYdaCSlseGWX+NiFkyhlEllbxZW9pueMz6a0xMyRiDllq4VZZ2bmb2ZQ/z0RtWMfuyh1nWuTnQftbnPjw2abMxMXeZMSiphVvF+2adc3udd8daZk/ZM5CyGIxpu3Fmy5n115iYJWMMOsq5VaKycKJ4s24d1cKMSeMGhYKp1KoLill/jYlZMsago1RQfcXGlyOzcOzNehfVWnVBGYzW32DHLBlj0FFs8B/ZnI40cGxv1ruoZbxkMFl/QwGzZIxBR27wL6yFtaMnE3nasL1ZO5hVZxTDlIwxKPEb/Ld2dccyEFo5lOKKfajfF8OUjDGIKRz8bSCMF7PqDD9MyRhDChsI48OKfRp+mJIxhhzm3ooeK/diFMOyywzDqAor92KUwpSM0RAkrfJu0uSpJ1buxSiFucuMxJM0V0xOnqaU0JNRLjphGgtm7V83eeqNpS8bpTBLxkg0SXPFeOXp6s7Q05flv+5cxy2//Wtd5EkCNinVKIVZMkaiSVrflU2v7KQpJQOWX3z3et530N5DdmC1rD2jGKZkjESTNFfMxN1H0JPRAcuHpa3hmGXtGX6Yu8xINElzxbSOauGiE6YNWJ5RtRiEYfhgloyReJLmilkwa39Qx0U2LJ0io9rwMQibSGnEhSkZoyGotyumcBBecMT+vO+gvQfFwJy07D1jcGFKxjDKUGwQrrfii4Ja9YExhi4WkzGMEkSZQp3ECZz1nEiZxPthRE/sloyIPAe8BmSAPlVtF5EZwLXAKOA5YIGqvuqz7znAmYAA16vqdwrWfwm4EthLVV+O8TKMIUpUKdRJdUnVK3svqffDiJ5aWTLHqOpMVW13v98AXKCqBwN3AosLdxCRg3AUzOHADGCeiEzxrJ8EHAc8H7fwxtAlikE4aRNKvdQjey/J98OInnrFZKYCj7mfHwR+BVxYsM2BwCpVfR1ARB4FTgIud9f/N3AesDR2aY0hSxQ9aJI2obSQWmfvJf1+GNFSCyWjwAMiosAPVfU6YD3wQeAu4BRgks9+64Cvi0grsBM4HugAEJEPAptVdY3IwNnXOURkIbAQoK2tLarrMYYY1Q7CSZtQ6ke1SQxhUqCL3Y+RzWnWvLAt0DEs5bpxENWBs5d9N3RG8wXAAap6iYi0AXur6u/K7Lefqm4WkfE4VsvZwEvAVUArsAz4vKq2+uz7KeBzwA4cxdQN/CewHDhOVbe7MZ/2cjGZ9vZ27ejoCHSthlGOsIPcss7NA6yhwRKDqCS+Ung/Tj1sIret3hToGJWcz5RS5YjIak+oI/z+IZTMD4AsMFdVDxSR3YEHVPUdgU8m8lWgS1Wv9CybCvxMVQ8vs+83gE3Ab4CHgNfdVROBLcDhqvr3YvubkjGiotKg9WAc6LZ2dTP7sod5o3eXZTJ8WIqV588NbI2MbE4z7+oVgY5RyfksyaA6qlUyYQL/s1R1EfAGgKq+AjSXEW6kiIzOfcYJ1K9zrRpEJAV8GSfTzG//3HZtOPGYW1X1SVUdr6qTVXUyjuI5tJSCMYyoqCZo3TqqhRmTxg0aBQPVpUDn7seOnkzgY4Q9nyUZ1J8wSqZXRNI4MRZEZC8gW3oXJgArRGQN8DvgXlW9H/iIiDwDPI1jhdzkHnNfEbnPs/8dIrIBuBtYpKrbQshrGJFjDbryiSLeFOYYYc9nf6/6E0bJXIWTbjxeRL4OrAC+UWoHVf2Lqs5wf6ar6tfd5d9V1anuzwXq+uxUdYuqHu/Z/2hVnebu/1CRc0y2OTJGXBROGKx2UE36BMRC+crJG0UKdJhjhD1fIyRdDHYCx2QARORtwLE4kyMfUtWn4hIsaiwmY4SlmC+/0iB+0mMDhfKFCcZHEW8Kc4ww2w7mpItaEHvgX0T2KLVeVf9Z6clriSkZIwzlAsxhB9VqAuS1wE++QoLIm9TkhqTK1QhUq2SCzJNZjROHEaANeMX9PA5ntv2bKj25YSSVchMGw84rSfoERD/5Ciknb5IttcFQzLRRKRuTUdU3qeoBwK+BE1R1T3dOyzzggbgFNIx6ELUvP+mxAT/5Ciklr2VxGcUIE/g/QlX7M79U9ZfAv0QvkmGUphbB86hreiWtw2chfvKdfmRbYHkti8soRpiyMltE5MvAz9zvC3DSjw2jZtTSJRN1Ta+wx6t1HMFPvnOOnRpIhqRbakb9CDPjfw/gImCOu+gx4GIL/Dc2jRQQTXrwPCq2dnVzy6rnuWb5RprTyYtvFCNoFlcjPXNGbQL/QH8W2TmVnshIHkkO1PqR9OB5FCzt3Mx5S9bQ3ee8/HX3NU63yiCWWqM9c0b1BFYyIrIcd7a/F1WdG6lERk1oxLa7jeKSqfRNPfc3ySkYL42iTEtlcTXiM2dUT5iYzLmez8OBk4G+aMUxakUjWgVR9HaJm2re1EulEcehTGvttgryzJkrbfARxl22umDRShEpWebfSC6NYhUUEsQlU6+Bqto39WJpxC1N0Wei1cNtVe6ZM1fa4CRwCrOI7OH52VNE3guMjVE2I0aSnlJbilLVjJd2bmb2ZQ/z0RtWMfuyh1nWublmclWbxlv4N2lpEr70nqk8fsHcSAfbes1pKfXM2TybwUsYd5l35n8f8L/Ap+IQyqgNtW67Gzf19vlHYR3W4m9ST1dpsetrRPetEYwwSuZAVX3Du0BE7K/f4Aymchv1HqiiihnF/TcppQxr4Wr0u75Gdd8a5QmjZB4HDi1Y9oTPMsOoC0kYqBrBOiymDFdsfJnzlqwlnRIyWeWK+bWLieRkWrxkDWlJkdHkJXUYlVFWyYjI3sB+wAgReTuOuwxgDLBbjLIZRiiSkH3WKNlRhcoQ4Ij/+xC9mV3p01+6fU1N04udM4szwqiU3thoGIJYMu8FPg5MBL7tWf4a8J8xyGQYvgQZwOtpSTRadpTXbfXYMy/lKRiA3oyyfst25kwdH7ssu+YI7bJEbQ7N4KCsklHVnwA/EZGTVfWOGshkGAMIM4AX+vxrYV1ElXRQP0uomOVQ3qKIQuao4mmNYkkOJYK4yz6qqj8DJovIvxeuV9Vv++xmGJFRzQAetXVRbBCLYpCspyU0fd8xNKXAY0jQlHKWlyIqmaOIpzWaJTlUCDJPZqT7exQwuuBnVExyGUY/lc4/iXruReEcnFt++9f+lgPVDpLVyBpF64PWUS18+9SZtDQJuw1L09IkfPvUmWW7YEZ1f6udt2XzbJJLEHfZD92Pv1bVld51IjI7FqkMw0OlA3iUKc1+1tR/3bWOUS1p+rLK5ScfUlXSQaWyRvn2HjaeFXXKeDXxtHqnrxvFCZPC/D0Gpiv7LTOMSKk0ayzKlOZidcW6ujOA475bef5cVp4/t6JBshJZq3EjFnP7hZmjE0fKeKVzhJKQvm74EyQmcyROB8y9CmIyY4B0XIIZhpdK3nKjTGku154499ZcrNxNHLLW2/opJ3Mtg/BJSF83/AliyTTjxF6acOIwOV4F5schlGH4UclbblQpzd5BLC3Cjp5M3voo3pq9so5sTrOjJ8PWru6iMtfa+ikns/f+1iMI3wgTYYciQWIyjwKPisiPVfWvNZDJMCIlqjIt3kFs3ZbtXHrPhsjfmltHtbBi48uBBuhaWj/lZC5MGY+jhlwQy6hWZZKitNIGe9p1mJjM6yJyBTAdp58MYE3Lkspgf3DrRW4QmzFpHO+bvnfk9zjsAB307T33PIxsTsceu4hDkSUpPTlKWZJ0XXERRsncAvwcmAd8BvgY8I84hDKqYyg8uEkgjrfmSgbocnIUPg+ntk/kto5NscUuog7C17u6dlyyJOm64iRwPxmgVVVvBHpV9VFV/SRQ1ooRkedE5EkR6RSRDnfZDBF5wl1+t4j4zvgSkXNEZJ2IrBeRL3iWXyoia91jPiAi+4a4jkGNzRdobOIcoHPPw20dm7jnrKP42RmzWHl+tL1qIPpeRdX26YmSKGVJ0nXFSRhLptf9/TcR+QCwBdgj4L7HqOrLnu83AOeq6qMi8klgMXChdwcROQg4Ezgc6AHuF5F7VHUjcIWqXuhu93ngKzjW1ZDH5gvkU8xtmFR3YrVZUoXXVex52NGTYcakcTFdRbRB+CSlJ0cpS5KuK07CKJmvichY4Es482PGAF+s8LxTgcfczw8Cv6JAyQAHAqtU9XUAEXkUOAm4XFVf9Ww3klwBV2PIPLhBKOY2vOW3f+Xiu9czLJ0ioxqpOzGs8vLbvtIB2u96Z0/Zs269YypxJ/rJFEV6clTXGmWq9FBJuxbVeMdnEflf4BUcRfBDVb1ORB7HURZ3uXNvLlbV0QX7HQgsBY4EdgIPAR2qera7/uvA6cB2HEtpQHxIRBYCCwHa2toO++tfh0Zy3LLOzQMe3KEWk9na1c3syx7mjd5dA+zwYSm++O6p/N9fPp237fBhKVae73h+qxmIwsbCooydFbvelefPZeXGlwc8DwqJi9uVux+VKoo4YpRDKbtMRFaranvF+5dTMiLyPUpYCqr6+TL776eqm0VkPI7VcjbwEnAV0AosAz6vqq0++34K+BywA1gPdKvqFwq2+Q9guKpeVEqO9vZ27ejoKLXJoCLpD27crHlhGx+9YRWvdff1LxvZnKYnkx1Q0n5kc5pPv/PNfP+RjRUPRKUGeb/7H3b7cvhd7+iWJn52xixmTBqX9zwAA87d0iQ8fsGxdXtWor4fcR+3Ghrtf7NaJRPEXVbVyKyqm93fL4nIncDhqnolcByAiEwFPlBk3xuBG93tvgFs8tnsFuA+oKSSGWrUar5AUvF1G2ayNKdT9GbyJ1L2ZLJcs/xZuvu04iyfsLGwqGNn5dyk3udhzQvbBpy7u0+5ddXznH3sW0Kfu1q2dnWz/OmXSEt+W4EoYolJi1EOxczPstllqvqTUj+57VyLJw8RGSkio3OfcRTLOteqQURSwJeBa/3O7dmuDScec6v73fuf8EHg6YF7G0MZvwyni06YTsbHcj/jqDfRnM6vkBQ2yydsLCzq2FmYjK6Ju4+gp0DRAly9fGPZLMRiFZ8rrQSdq2z91bvXR1ZFwStLkmKUQzXzM0zgvxx+FZknAHeK84bSBNyqqve7qcmL3G1+AdwE4KYi36Cqx7vr7hCRVpzMtkWqus1d/k0ReSuQBf6KZZYZLl5XhF8AffTwJqc0TErozSgXnTCN903fm5sefy7vOD2ZDNt39pQs6+IlbBA3jqBv0ISB1lEtnHXMW/jWg8/kLW9KCcuffolj3jbed99ib+GVvp17B10vI5vT/QkZYe+HnyxJCa4nzaqqFZEF/kXkD6qa2IrMQy0mMxQJOtj5+cS9yRI7e/sQEYY3pUO7NKLILqsFW7u6+ZdvPpzX7hjIa11QGHT3i23cc9ZRzLt6he/yHT2ZktflGzdrSXPxCdOLKrpy11Qs/gLVJXVEQRLjQ0GoNiYTZjKmYSQWP1fEubevYeOLrw3YNlcWxvuPfeLM/Vh5/lyuWXAo6VSK3oxW5NLwO3aU20dF66gWrpjvuNdGNu9yFXZ1Z3yvudjEwU43vuNFs8rx31vR39xtWefmAeff2tXN9p299GTylVwmqxUpmFIy5iyFWt5nP/dh66gWLpw3jeamFCNb0lVPUm0UonSXlW8Gbhgx4eeK6Mk4g92V84NZIq2jWhg7YhjN6VTeG37ULo2kZBedOHM/pu0zhmVrtnDjir+wo6f4NReLbcycNG7A8u6MAkpPn38ShdfizGSzDEvnW42l7kmpe5eU+Espt6JTVFXo7cty0QnTB33QH6K1ZL4b4bEMIxTF+r309IWzRIoNVCOb01W3OIaBLZz93vKLEUWb5UJZ5l29gh+t/N88BQMDB+diiQVTJozOW96cFoYPK14qpdDi7MtCSuCaBW8vW+ImyL1b9K4ptDRJJOVsKqFYcH/ji6/1L9/Rk6Eno1x674ZBH/SHEJaMm2q8GNjfu1+uCrOq/jhq4QwjKLlB8Nzb19BTMA+mnCVS+HZcGCg+9bCJzLt6RdVpp9UURIw69bWSoHuxxILCPjjzrl6Rt59XYflZnM3pNGNHNJe1YErdO+/9AWHhnAM4bVZbzS3FYsH9Tp+08aEQ9Idw7rLbcVKNrwcG5j8aRp3JuX+O/96KflcNlHaZFBu8CwfNKCrlVppdFEe1Xj9ZggTdi82/8i4vlc1VqUur1L0DBtyfax7ZyGmz2srdhsgJ41YcKuWewrjL+lT1B6r6O1VdnfuJTTLDqIApE0Zz5fxg80VKzVvIBYp39GQiqZTrBLp7BsxPCTPAViuDF7/BsJqgu5dcEoVfledKKzSXUk5JqmYc1K04VIL+EM6SuVtEPgfcCfQ7ElX1n5FLZRhVEHS+SBDLIopgstdaKsgY5tT2iVUNsJUSd3HGUhUnKikAWk7eJFkJQdyK9U76qCWB58m4hS4LUVU9IFqR4sHmyRiFBJ23UE3BUb9zeAk6T6JaGYoNbHFkusWZPVfs2FYUNj5qUbsMAFV9U6UnMYwkEvRtvpo3UD9ryW+bcseMsvx/ofsqJ4P3e6XEXZurmIU0VK2ERiBMdtkw4LPAHHfRIzil+3uL7mQYCSdMKZaoCld6eaM3mzcZshRhZQiSMBB1u4F6tBP2WjdxNmJrBJIyB8tLmJjMD4BhwPfd7//mLjsjaqEMo5ZUW7G61D+211pKifB6QRHIlrQMKAwZ5Hzrt2wHhOn7jqk45hS1UqhHba6wSjKJg3BUJLXCcxgl8w5VneH5/rCIrIlaIMOIk6gHmSD/2Dlraf2W7Zx5cwfdfbvioJKS0EkE596+pr8nTlMKvn3qTN/BpFzCQC3aDfRkMrEF4MMqyaQ3L6tWjnpYkUEIk8KcEZE3576IyAHYfBmjgahmtr0fYUq3t45qYc7U8Vwxf0bFaaxbu7o5b8navKZrfVlYvGRN0XOWSpuNq91Ak2dUySqs3PhyRccrR5jU5TjK7Ef9PFVDktK4CwljySwGlovIX3DqlO0PfCIWqYxISMpbVhKo1YTGcpbALqvmVUCZvu/YAXIW+5ttemUn6dTAEoFpKX7OUjGnONKYZ0/Zk3QqRZ+rvHozGtsbdRglGbXVljTLISl12/wIk132kNss7K3uoj+p6uAvvNOgJNU/Wy/iiBdU+o+9YuPLFfVlmbj7CDLZgVMO+sqcM+o5K6XY9MrO2AuM5gijJKMehJPWGybueU/VUFbJiMhcVX1YRE4qWDVFRFDVX8Qkm1EhSXvLSgJJmdBY7G8zbZ8xZf9mufL8X/LEZACyqqzc+HLFLxHVJj54CXOfo7C0w2QHRjkIJ9FySGoadxBL5p3Aw8AJPusUp7OlkSCS9paVBOJ60wv7j11tAcVcfbb3X/UYvW5EtC+bnJeIoPc5jKVdThkFVZJRDsKto1o4tX0iNz/xfP+yINUb4ibKF4aoKKtkVPUi9+Mlqpo3619EbIJmAilXrj5Jbzm1JK43vTD/2NUUUMwNttt39jK8qYnezK6Okkl6iSh3n8NY2uWUUVhrKKpBeGtXN7d1bMpbdlvHJs45dmoi/gZJIkzg/w6gsL3yEuCw6MQxosDvbTKqcvX1ploXS6WDTFRtlYu96ecKKBazALyDbU8mSyZiV02Q6/PbppK/R1BLO0x5/1o/0+YtCE6QmMzbgOnA2IK4zBhgeFyCGdVRrlz9uUucOMCUCaPLHispWWr1GlTCnrfc9mELKPoNtsPSQkuT04ulWtdfkOvz20ah4gSGIPGMsOX9a+kyTGJMJqkEsWTeCswDxpEfl3kNODMGmYyIyL21r/Hx9/f0ZTn+qt9w5Skzqhowa0U9S5aEOW+57cuVQPGztPwG2+FNaa5Z8HbGjmiuSvkHuT6/bRYvWQMI3X2VJTAEidsEKe9fL0siydlcSSNITGYpsFREjlTVJ2ogkxEhTh+TXnoyPq2Jy8xhSFKWWr0GlbDnLbV9sdTlchQbbKfvOzaSlONy1+e3TVpSzmw5D2ETGMrFx8oN5PW2JJKazZU0wsRk/igii3BcZ/1uMlX9ZORSGZHgtUIy2SxNKaEvG7w1cb3fFr3Uyz0R9rylki4qVdhxvjUHuT7fBmeaBZUB+4XpAFkqPpaz+GZP2ZOV588dMJAnxZJIYjZX0gijZH4KPA28F7gEWAA8FYdQRvX4WSHNaWVYWvLmWFQyYNbD7xzloBImxhT2vMW2z3XYrFRhx5kZd+EHpnHx3esZlk6RUfW9vkXvmsLVy5/NiwEBoRMYghDURWuWRGMQpmnZH1X17SKyVlUPcUv//0ZVj4hXxGgYak3L1rywjY/esIrXuneluY5uaWLhnAO45pGNgV02SWsGVW0SQqUxpmqzy0o1SAPqNlDm7kdTSujJKBedMI0Fs/YfsD6X1XbWMVM4bVbbgOyykc1pdvRk8q63kmsK2kjOqB01a1oG5PrGbBORg4C/A+MrPbERL8WskNNmtXHarLbAA0CYt8VaZKFV456oJsYU9ryF2xezcLxxGr9BPE689yPHpfds4H3T9+5XFIX365pHNnLarLa86yoWa6rkGpLkojWiIYySuU5Edge+DCwDRgEXxiKVUTXl3Dyl/mE3vvganS9sY+akcUyZMDrQAJuULLRShJmfEYeyLFTYQP9be06mbz34DFcvf5Yr5pfO+ouCcvcjyP3yU0Tn3r6WlMCRbw6fIDKyOU13JhkuWiMawiiZh1T1FeAx4AAINuNfRJ7DSXfOAH2q2i4iM4BrcRTVc8ACVX3VZ99zcNKkBbheVb/jLr8CJ526B/gz8AlV3RbiWgKTlDkilVCJz/ordz3Jzb/dVSrj9CPbuOSDB5fcJ0lZaKUIEmOKQlmWa2KWW+aXWg7Q3aece/uawPOYKqXc/Qhyv/wUUU8my1n/08mwtPCtMinyXnL3XlwX/vBhTul6Sw1ubML0k7nDZ9mSgPseo6ozPX69G4ALVPVg4E6cNgJ5uC65M4HDgRnAPBGZ4q5+EDhIVQ8BngH+I/hlBCdJ/SIqpXVUCzMmjQv0T7rxxdfyFAzAzU88z8YXXyu5X5J7WXjJWXfF+qtE0XMkzDNTqjVzT0Y5/nsrYn3myt2PcuvLXUNvRlm8JNj98977bjcxJZtV7jnrqMRZxEY46jXjfyqORQSOwvgVA11vBwKrVPV1V45HgZOAy1X1Ac92vwXmVyhHURrl7TxKOl/YVnR5qTfqsFlocVqH5Y5dyrqrNh4Q9pnJDeKLl6zNK42fo6cvW9EzF+b+lrN2y63PXcO5S9bS43MN6ZQEun9+976lKV2yNXUjexmGErWY8a/AAyKiwA9V9TpgPfBB4C7gFGCSz37rgK+LSCuwEzge8EsP+yTwc78Ti8hCYCFAW1ub3yZFGYoByJk+M9BLLc9RGP/pyWRY9K4pvtvGGbsJeuxiMaZi7YO37+xha1d3RQNl0CZmF961jvvW/X3A+hTC+i2vMmfqXiXPnaOS+1su5lZuvV9l6ByZrPa/bJRSCmFfVBohBmg4lHWXqepSVf0EME9VP+H5+byqPh7gHEep6qHA+4FFIjIHRzF8TkRWA6NxYiuF530KuAx4ALgf6KSg3bOI/BfQB9xSRPbrVLVdVdv32ivYP2mOJM0RqRVTJozm9CPzlfHpR7YFigucOHM/Vp4/lzPnHAAI1z32lwHuojha4EZ57EL3UFPKaR+86JY/BnKXVvPMPPynl3yXv96b4cybOwK5zeK8v+WYMmE03zplZl7r5WFp4Yr5jnutnBsxiGsuRz2v0whPmMD/h0VkPY5VcT9wCPBFVf1ZqZ1UdbP7+yURuRM4XFWvBI4DEJGpwAeK7HsjcKO73TeA/traIvJxHAvrWA062ScESZlRXGsu+eDBnH7E5LzssjB8/5GNdPdl+90/XndPFO6oUq2Jo7A8ve2Rz7y5g+6+bH9J/XKuq0qfGT/ZvXQHdJtFdQ+CuqEKt/NrLV0sFdrveoImqgxFL0MjE0bJHKeq54nIh3Eywk7CiasUVTIiMhJIqepr7ufjgEtEZLyrdFI4KdHXFtk/t12be74j3OXvA84D3pmL2cTBUJ1RPGXC6Iqymsr981fzph9VZd8gtI5qYeyIYRW1Ea7kmSkVPA9z7ijuQVA3VLHtWke1DHDthVEKQdLlh6KXoZEJk102zP39AeB2Vd0eYJ8JwAoRWQP8DrhXVe8HPiIiz+CUqdkC3AQgIvuKyH2e/e8QkQ3A3cAiT5ry1ThutgdFpFNEfJVUFITJzhrqlPvnD+MS8RLEPVLpsYsxsjlNd19+gCHoQBb2mSmUvaUpled2yp0713SumFuo2ntQ6j5v7eruP3dYd1XUSiHqv7URL2EsmbtF5Gkcd9lnRWQv4I1SO6jqX3DSjwuXfxf4rs/yLTgB/tz3o4sc1z+qbNSVIO6iSt70g74JR2V55t7SUymBjNKSFiQlsQ5khbKv3PhyRU3nqrkHxe7zLaue5/ueUkSL3jUllLuq2HMBVNypdah6GRqRwLXLAERkD2C7qmZc99doVf27u+49qvpgTHJWzVCrXVZPok4trVU9q61d3XmxmBzNTSnuO/uoyCdGlrtP3rpguaZzOeK6/sL73NKUApTuPi25LIg83uuttO2BUXuqrV0Wxl2Gqv5TVTPu5x05BeNyWaVCGIOLqF2MQd0jXpeOH6XW57KfPvPT1QPmrLSkUyXna1RCkEmbufuYq+DsJY7Jrn73+axjptCcTudt15xOcdYxb2H4sBQjm9M0p4ULPzCt7N8jdz2AZYcNIcK4y8oh5TcxjMoo5x4pF7Autd6vUKSXqIPKYSdt1jLQ7Vdf7ZpHNg4492mz2thjZDMX37OB5qYUl967gdHDm/rvaan7XcvsMJuwWX9CWTJliDyN2DC8FLOQygWiy633K4sDsFtzOpagctgyPHEFuotZdt77XOzcAJfeu4Gevixd3ZkBSQKl7netlGY5a7Gc5WtEQ5SWjGHUhWqrCU/cfcSA9tQtTcK1Hz00khbHhVQyyEYd6A4zY97v3H7FPb2KstT9rsUctHLWolUMqB2BlYyItKhqd4llz0UpmGEEpdpqwis2vkzGs96ZqT6DOVPjaZdU6SAbZA5JEIoNwNP2GZPXeKzUucvd03JKNO7ssFIvFsCQq0tYT8JYMk8AhxZbpqonDdjDMGpAuUG71PrcgOuN9acEZk/ZM1aZ65mCW6zCwPFX/YaWpnSgN/ty9zyIEo1KaXrxZuQVU3RWMaC2BKnCvDewHzBCRN7OrgD/GGC3GGUzjMCErSYMzhyN7Tt7Bww4zel0TQacOAbZIPi5B3NJDz0BS+jArsKYfiWIqlGilQbrC11gp7ZP5LaOTb6KzioG1I4glsx7gY8DE4FvsUvJvAr8ZzxiGUZ4glYTLuxbnwk54PgNgmEHxnpmPRW6B5tSAiiFlfrLKdpycY1KlGilsRI/F+BtHZu456yj8lyAuft+4bxpXHrPhiFVl7BelFUyqvoTEfkp8BFV9a12bBhREne/mcLBaFhaaGlyLJhyA47fIKgQamCsZ9DZzz0oKIXZ22/0OmVsyh0nyrhG0GP6PR/FXGA7ejL9c3MK7/uFH5jGQfuNtfTmmAkUk1HVrIh8kSIl9Q0jKuIegP0Go+FNaa5Z8HbGjmguOeD4DYKLl6wBhO6+YINtkIE0jJINq5B9B+OmNPRl6c16ZvWnhS3b3yiaCOB3nHRKWP70SxzztvEVDdpBYiXFno9yiQh+9/3SezdEXjXBGEiYwP+vReRcnAZhO3ILVfWfkUtlDElq0Y202GBUKlU5N5Bv39kzcGCV1IBpyKWCyH4DaUqE9Vu2M2fq+FBKthKF7Hf9maySSoE3DyCjypk3d9CcDl71ekd3houWrefLS9dV9HJQiaLwPh+lkg0s2F8/wiiZf3V/L/IsU+CA6MQxhjK1GAgKB6NSXTyBgvhNhmzBlOOMZkHztUypmI7fQPp6j9OY7CsnTOfSezYEUrL+VtVaxu3WzPR9x5S8X4veNYWrlz+b5x7Mnct7ncX6AhXex3RK2NHtlN3Jld+p5OWgWkVRKtnA2gPUj8BKRlXfFKcghlGrgSA3GN2y6nmuWb6R6x77C9c8snHA27ffQN6UcgpEet/wgcBzXnID6eIla/NqpHX3KRffvYFhqXyFlRbxVbJ+A253X5ZP/7QDhf5rKVaUEoSFcw7gtFlt/cfODdDbd/aw6JY/9jdrg4HKfmtXN/u3juSes46i84VtXLRsfV59t0pfDqpVFMWSDWoxAbQUQ7m8TagZ/yJyEDANGJ5bpqo3Ry2UMTSp9UBQqosn+A/kI4Y1cc2CQxk7YljegJEbGEc2p9nRk2FrV7ev9bHplZ3MnrIn15/ezmd+uprXez0Dc1roLUjx2tGTYd2W7f3B6xzFGp3t7N11La+90cel927Is056M9p/Pdc8spHTZu1qt50boLd2dZcczJd2bua8JWtIS4qMZvnKCdPJFFRzr7ZfTByKol5zk4Z6dYEwM/4vAt6Fo2TuA94PrABMyRiRUauBIIhrrnj8ZqA7qnVUS8ny9QMym+ZNc1xtHjJZ5dzj3so3fvl03vJL7l7PpN1H5MWNillEOVIiXHz3eno8SqWQUt0pS01e/dJtnW52mqMgL1q6jotPPKhfoYUd/MO85Vf7fFQzN6kSa6QWccakE8aSmY/TgOyPqvoJEZlAidbLhlEptZikGNT1EvTNudRgAgPLmFy0dB0iu1xjTSnHxbV/60hGtaTp6t5l4XT3KZ/52R/IquYprhNn7se43ZpZeHMHbxQomt5Mlua0Y8EUo5S1UWwwX7/l1QHzafqyMGmP3Vh5/tzQg3Alb/n1mMRaqTViCQfhlMxON5W5T0TGAC8Bk2KSyzCqotxbZ1AFUmywLTx+uVpZheucgXqXiymdSvUrpL7C7AKc5AAY+BY8fd8xvk02Fh/3Vr7962d8783wYU4F6HLWhv9gXqzYuoYe/BvlLb8aOS3hIJyS6RCRccD1wGqgC6d2mWEkiqBvnUFdL4WDp9/xZ0/ZM1TByEKa045CmjFpHKceNpGbf/u873aFb8F5WV4i9GayXHTCdBYcsT97jx3u607LZpX7Pn900U6fpRT09H3HOrGjzC5lMywtTN93bMnjAIEnUCbtLb8aOeudcJAEwmSXfc79eK2I3A+MUdW18YhlGJUR9q0zqrfvlefPDVww0huEz5FTSFu7urlt9aai5/d7Cy6mLHPutIEJBik6X9jG7iObB1x7MQXqPfa3TpnB4iVO6nImq1wxf+Cg6T3Ozt4+RIThBcU3Rzan6c4k/y2/WmuknsVQk0CYwP9DqnosgKo+V7jMMJJA3G/HpY5fajApXLdy48u+CmnNC9tIy0D/127N6f6YTBhlOX3fMWQLXFw7enZNmrxw3jQO2nds/4BZqEC/dPsaUpJfcqfcoOmniEH7U6K9mW/iZqUFdeFFTZBgfhTWSD3iSEkhSBXm4TjVlvcUkd3Jr8I8dPLwjIYgbh94ueOXGky864oN1Os2b8+bbwLVNVDzDpDZTJYeV/TcOf7rznWMbE6TUWXRu6YMUKA5a6u7b2B15mKybHplp6+izJFO7cp8y1HOhRcH1TZuM4IRpP3yp3FiMG9zf68GOoClwPfiE80wwpMbVKNuVRzF8Qvb/baOym8nvbWrm0vv3TBgv6/Mm86cqZXVAwNngLznrKPIFhn4d/Q47ZOvXv7sgBYAhZRqE53DT1F66c0ow9L5Q09LU7rkPlFTrkW0H4V/LyMYQaowfxf4roh8BfiOqr4qIhfiNCuzwL+ROOJ+6wx6/GKz7Yu9NftP/kwzaY/qrbAdPRla0in6SqQ0N6fTLJxzANc8sjGvDYI3byBIGwQ/RdmUciay5uYIXXpP/ja1jsU0StLBYCDUPBlVvUREjgLmAlcCPwBmxSKZYVRB3D7wcsf3q3nmnW2/eMnAZAQ/V9zO3gxn/OT3nD13al4JmLBM3H0EfWUy3HqzWU6b1cZps9rKxo6K4ecqG9mS5gcLDs2rcj26pamuGVeWWlw7wiiZ3CvQB4DrVfVeEflaDDIZRkmSXgfKP/CdT3dflltXPc/Zx76lf1mxWfw9GfjWg89w9fKNXDG/spIkraNaOOuYt/CtB/3nzgD8+7un5qVGQ3ir0M9VlsnqgHhSvWMcllpcO8Iomc0i8kPgPcBlItJCgJiOiDwHvIajpPpUtV1EZgDXAqOA54AFqvqqz77nAGfiJBtcr6rfcZefAnwVOBA4XFU7QlyH0cDUqw5UGMXm54rx4+rlzw6wToqlHYOjmM5dspZp+4ypaI7LabPauHr5Rt8yNABXPvAnAPYY2ZzXTjmoVVjMVXbhB6ZFkj4eNfVWdEOFIIH/HKcCvwLeq6rbgD2AxQH3PUZVZ6pqu/v9BuACVT0YuNPvOG4xzjOBw3HK2cwTkVxN9nXAScBjIeQ3GpxKgrVRsLRzM7Mve5iP3rCK2Zc9zLLOzSW393PFpH1i7s3ptG8Q3S/tOEdPX5bjr/qNrwzl5Gwd1cIV8w+hpck/AaAno3zjl09z7pK1vPu/H+MrS58sdom+5JSrl5EtaQ7ab+BEzaRQaTC/MInDKE5gJaOqr6vqL1T1Wff731T1gQrPO5VdCuJB4GSfbQ4EVrnn7QMexVEsqOpTqvqnCs9tNCh+g1iQbKdq8FNsi5es5bFn/lF0gPHLQLvkQwcNGNyLxQBy+5dSBoXKNagCPnHmfjx+wbF86T1TafbTfB5ufuJ5Nr74WsltvBRriDbY4hxhXzqGOmEsmUpR4AERWS0iC91l64EPup9Pwb8G2jrgaBFpFZHdgOOLbGcMEeoRrPVTbN19WT7z09UlB5gTZ+7HyvPn8rMzZrHy/LksmLU/V8yfETj1OV8ZDPw3LVSuYRRw66gWzj72Ldz3+aPLKprOF7aVXF943DjTx5NAvazpSkmCxRWqn0yFHKWqm0VkPPCgiDwNfBK4yk2FXgb0FO6kqk+JyGXAAzjtnjvZlXwQCFepLQRoa2srs7WRdOoRrC3WtyUXLwlTsiZsDCCnDN5/0N4cf9Vv8iYvFirXShTwlAmjufKUGZx3x1pSIv1FOL3MLOhjUy42NdjjHI2U+pyUPjaxKxlV3ez+fklE7sQJ1F8JHAcgIlNxMtb89r0RuNHd7htA8aJO/vtfB1wH0N7eXqx8rNFA1HoQ8yo2v4E47ABTSbDbqwyKKddKFbD3ft6y6jlu69hlmZ1+ZFtegkHQQaveAf04aZTU5yRVuI5VyYjISCClqq+5n48DLhGR8a7SSQFfxsk089s/t10bTjzmiDjlNRqDWg9iuYF4/ZbtnHlzB919xS2KuGXwU67ejpuV9HTJ3c8Zk2ay8Og30/nCtrzsstw5kjJoxU0pa61RUp+TZHHFbclMAO50mzM1Abeq6v0ico6ILHK3+QVwE4CI7AvcoKrHu+vuEJFWoBdY5Ga1ISIfxilpsxdwr4h0qup7Y74WYwjTOqqFOVPHc8X80hZF3DIEqZpcjUtkyoTRvunRcQ9acc99Cnr8IPezEVyCSbK4RHVoeJHa29u1o8Om0xjVk5TJoFu7upl92cO80btrMBk+LMXK8+eWlKvSNsJxnSvu2EHQ41d6jUllWefmAS9EldxXEVntmX4SmloE/o1BQlIG13qTlJhDJdZFpQN6JW6iIOeK2w0X5vhJcjFFQVIsLlMyRiCSkqli7CKsS6TaAT3MoBX0XPXs/1N4/CS5mKIiCS9EtZgnYzQ4jTY3YKgQdl5KFJNZg86QD3quOAf2rV3dbN/ZQ09B5elyk2AH8zyfemCWjFGWweZGGEyEaTsQZsCtlJxLdWRzOpDyiCtby2t5ZzW/1UC5SbBJcDENJkzJGGUZjG6EwUSYtgNhBtywFLpUT22fyG0dm8oqj6gHdj9XXUtTimsWHMr0fccEmgRryiU6TMkYZWmUuQHGQKodcKs5z20dm7jnrKPY0ZMpqzyiHNj9LO/mdIqxI4bZM1sHTMkYgTA3QmNSqwG3mEt1R0+GGQWlaeJm4u4jYncLGsExJWMExtwIjUetXJ1Jcqmu2PgyWc/0v6YUZnnXEcsuM4xBTK0ypqI6T7VVg3Nuu15PMdF0KsXsKXtWdDyjesySMYxBTjWuzjATcKt1qUYxF6uYe9AyIeuHKRnDGAJU4uqsZNCv1KUa1cz/JLntDAdzlxmGMYBaT8CNqutptW67JDT5GmyYJWMYxgBqPQE3SgukUredlU6KB7NkDKNB2drVzWPPvMRjz/wj8jfvWrudok5QCFr+JoeVTooPs2QMowFZ2rmZc29f059F1ZSCb586M7I373pMwK3nXCwrnRQfpmQMo8HY2tXNeUvy03T7srB4yZpIO1XWY9CPYi5WJS0pLGEgPkzJGEaDsemVnaRTMmB5WqJ/867FBNwo+xTVsl+OEQxTMobRYEzcfQSZ7MCOthltvDfvKIPtteyXYwTHAv+G0WC0jmrhivmHMCy9y5ppSsEV82c01MAYdbC9lv1yjOCYJWMYDUjurXv9lu2ARFpRuVZEHWy3uEoyMUvGMBqU1lEtzJk6njlT92o4BQPRKwXrbJlMzJIxDKMuxBFst7hK8jAlYxhG3YhDKVhLimRhSsYwjLpiSmFwYzEZwzAMIzZMyRiGYRixYUrGMAzDiI3YlYyIPCciT4pIp4h0uMtmiMgT7vK7RWRMkX3PEZF1IrJeRL7gWb6HiDwoIs+6v3eP+zoMwzCM8NTKkjlGVWeqarv7/QbgAlU9GLgTWFy4g4gcBJwJHA7MAOaJyBR39QXAQ6r6FuAh97thGIaRMOrlLpsKPOZ+fhA42WebA4FVqvq6qvYBjwInues+CPzE/fwT4EPxiWoYhmFUSi2UjAIPiMhqEVnoLluPoygATgEm+ey3DjhaRFpFZDfgeM92E1T1b+7nvwMT/E4sIgtFpENEOv7xj39EcS2GYRhGCGqhZI5S1UOB9wOLRGQO8EngcyKyGhgN9BTupKpPAZcBDwD3A51Axmc7xVFkA1DV61S1XVXb99prr4guxzAMwwhK7EpGVTe7v1/Cib8crqpPq+pxqnoY8D/An4vse6OqHqaqc4BXgGfcVS+KyD4A7u+X4r4OwzAMIzyxKhkRGSkio3OfgeOAdSIy3l2WAr4MXFtk/9x2bTjxmFvdVcuAj7mfPwYsjesaDMMwjMqJ25KZAKwQkTXA74B7VfV+4CMi8gzwNLAFuAlARPYVkfs8+98hIhuAu4FFqrrNXf5N4D0i8izwbve74bK1q5s1L2yruC+HYRhGVIgT0hj8tLe3a0dHR73FiJ0oOw0ahmGIyGrP9JPQ2Iz/QUTUnQYNwzCqxZTMICKK9rOGYRhRYkpmEGHtZw3DSBqmZAYR1n7WMIykYU3LBhnWftYwjCRhSmYQYp0GDcNICuYuMwzDMGLDlIxhGIYRG6ZkDMMwjNgwJWMYhmHEhikZwzAMIzaGTO0yEfkH8Nc6irAn8HIdz++HyRScJMplMgUjiTJBMuXyk2l/Va24IdeQUTL1RkQ6qikyFwcmU3CSKJfJFIwkygTJlCsOmcxdZhiGYcSGKRnDMAwjNkzJ1I7r6i2ADyZTcJIol8kUjCTKBMmUK3KZLCZjGIZhxIZZMoZhGEZsmJIxDMMwYsOUTEhE5Eci8pKIrPMs20NEHhSRZ93fuxfZt01EHhCRp0Rkg4hMdpeLiHxdRJ5x130+IXIdKyJ/EJFOEVkhIlNqIZOIHOOeM/fzhoh8yF33JhFZJSIbReTnItKcAJluEZE/icg69/jDwsgUl1yeba4Ska4kyFTtsx6TTFU959XI5W53uYisd+/HVSIi7vLDRORJ91nvX14vmURkNxG5V0Sedtd9M5Agqmo/IX6AOcChwDrPssuBC9zPFwCXFdn3EeA97udRwG7u508ANwMp9/v4hMj1DHCg+/lzwI9rJZNn+z2Af3pkug34P+7na4HPJkCm4wFxf/4nrExxyeUuawd+CnQlQaZqn/WYZKrqOa9GLuBfgJVA2v15AniXu+53wBHuc/VL4P31lAnYDTjG3aYZ+E0QmULdSPvp/yNMLvjD/QnYx/28D/Ann32mASuKHO93wJQEyvUnYJb7+T+Ab9RCpoL9FwK3uJ8FZzZyk/v9SOBX9ZTJZ90Xga/X6u9XSi53gFju7htaycQkU9XPegwyVf2cVyqX+wyvBkbgDOIdwIHu9k97tvsI8MN6yuSz3XeBM8vJYO6yaJigqn9zP/8dmOCzzVRgm4j8QkT+KCJXiEjaXfdm4F9FpENEfikib0mIXGcA94nIJuDfgGDmcfUyefk/ONYBQCuwTVX73O+bgP3qLFM/rpvs34D7I5ApCrnOApZ5jpEEmeJ41quVKY7nPJBcqvoEzovA39yfX6nqUzjP9SbPpjV71kvI1I+IjANOAB4qd0JTMhGjjor3ywtvAo4GzgXeARwAfNxd1wK8oU45h+uBHyVEri8Cx6vqROAm4Ns1kgkAEdkHOBj4VZTnjVGm7wOPqepv6i2XiOwLnAJ8L2pZKpXJJdZnvUKZYn3OS8nlxn8OBCbiKJG5InJ01OePUiYRacJR0lep6l/KnceUTDS86D68uYf4JZ9tNgGdqvoX9038Lhx/aW7dL9zPdwKH1FsuEdkLmKGqq9ztfo7jq62FTDlOBe5U1V73+1ZgnPuQg/NPsLnOMuHudxGwF/DvEcgThVxvB6YAG0XkOWA3EdlYZ5kgnme9YplifM6DyvVh4Leq2qWqXTixlyNxnuuJnu1q+awXkynHdcCzqvqdICc0JRMNy4CPuZ8/Biz12eb3OANkrprpXGCD+/ku4Bj38ztxApH1lusVYKyITHWXvwd4ymf/OGTK8RE8bg33zWs5MD/g/rHLBCAiZwDvBT6iqtkI5KlaLlW9V1X3VtXJqjoZeF1VQ2dNRSmTy11E/6xXI1Ncz3lQuZ4H3ikiTa679Z3AU65L61UROcLNKju9yP41kwlARL4GjAW+EPiMlQS4hvIPzgP6N6AX563sUzixgoeAZ4FfA3u427YDN3j2fQ+wFngS+DHQ7C4fB9zrLn8C580qCXJ92F22BicD7YAayjQZ580tVXDMA3CCxxuB24GWBMjUB/wZ6HR/vlLjv5+vXAXHryS7LI57VdWzHpNMVT3n1ciFk5zxQ5xBfAPwbc8x24F17rN1NW6FlnrJhGNNqbs896yfUU4OKytjGIZhxIa5ywzDMIzYMCVjGIZhxIYpGcMwDCM2TMkYhmEYsWFKxjAMw4gNUzKGYRhGbJiSMRoOEfmCiOxWwX4fd8uthN3vQyIyLex2InKJiLw77PlKHP/jInJ1VMfzHPeGnNwi8p8V7D/ZW07eMLyYkjEakS/gVIcNjFv08+NAaCUDfAinWnWo7VT1K6r66wrOV1NU9QxVzVWfCK1kDKMUpmSMRCMiI91GSWvEaQp2EY6iWC4iy91tfuBW9V0vIhd79n1ORC4TkT/glBNpB24RpznViCLn+6Y4jdvWisiVIvIvwInAFe5+bxaRM0Xk965Md7jNnPy2+7GIzHePe6xb5fpJcZpJtXhkvFicpllPisjbAt6XySLysCvnQyLS5i7/sThNph4Xkb94zp8Ske+L03DqQRG5z7PuERFpF6cJ1QhX/lsKLRQROVdEvup+Psy9/jXAIs82aXEqef/ele3TQa7HGLyYkjGSzvuALao6Q1UPAr4DbMFpnpSrgfVf6lT1PQSn5pK36OJWVT1UVX+G0xdjgarOVNWdhScSkVacEiPTVfUQ4Guq+jhOvafF7n5/Bn6hqu9Q1Rk4JTY+VWS73HGH45Tr+VdVPRin8vVnPad+WVUPBX6AUw07CN8DfuLKeQtwlWfdPsBRwDx2la0/CaesyjSccvbegocAqOoFwE5X/gVlzn8TcLZ7D7x8Ctiuqu/Aqep9poi8KeA1GYMQUzJG0nkSeI9rkRytqtt9tjnVtVb+CEwn37X18xDn2g68AdwoIicBrxfZ7iAR+Y2IPAkscM9ZircC/6uquWKQP8HpWpgjV5V4NY4iCMKRwK3u55/iKJUcd6lq1nWB5fqFHAXc7i7/O06h0YoQp5fIOFV9zHP+HMcBp4tIJ7AKp1ZWVP2RjAakqfwmhlE/VPUZETkUp8Xx10Qkr0mS+5Z8LvAOVX1FRH4MDPdssiPEufpE5HDgWJxKz2fhVKUu5MfAh1R1jYh8HKc1bTV0u78zRPM/2e35HKovfAF95L+IDi+2YcH5zlbVmvUAMpKNWTJGonGzwV533V1X4PTgeQ0Y7W4yBkeRbBeRCcD7SxzOu5/fuUYBY1X1PpxGVjOK7Dca+JtbBt3rVip2/D8Bk8VpBgWOu+rREnIG4XGcDo+4MpRrlLYSONmNzUyguGLsda8L4EVgvIi0ujGkeQCqug2nm2rOevLeg18Bn80dQ0SmisjI4JdlDDbMkjGSzsE4wfQsTsnyz+K4iu4XkS2qeoyI/BF4GngBZzAtxo+Ba0VkJ3CkT1xmNLDUjaEIuxqQ/T/gehH5PI6FcyGOK+gf7u/RRbYDQFXfEJFPALeL03Dt98C14W9FHmcDN4nIYleOT5TZ/g4cC20Dzn36A457sJDrgLUi8gdVXSAil+C0VtiMc49zfAL4kYgo8IBn+Q04Lr8/iIi4sn0o3KUZgwkr9W8YQwQRGaWqXW6Cw++A2W58xjBiwywZwxg63OMG7ZuBS03BGLXALBljSCIidwKFqbXnJyFg7brWzilYvFJVF/ltbxhJxpSMYRiGERuWXWYYhmHEhikZwzAMIzZMyRiGYRixYUrGMAzDiI3/D0OSo2y/WEY7AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "station_data.plot.scatter(\"start_station_longitude\", \"start_station_latitude\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now have tools to plot the most popular bike stations as bigger circles" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEHCAYAAAB8yTv9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABTOElEQVR4nO3dd3yV5fn48c/1nJGThIRAwl5hCIogCIgMAUe11l1X66wTV521/fZrtbXzV1f7VauiYtU6W6u4izgBAYGw994rjAwyTnLG9fvjPKEBMs5Jzkzu9+uVFydPnnElnHOu89zjukVVMQzDMIxYsBIdgGEYhtFymSRjGIZhxIxJMoZhGEbMmCRjGIZhxIxJMoZhGEbMOBMdQLzk5eVpfn5+osMwDMNIKQsWLNinqh2aenyrSTL5+fkUFBQkOgzDSCrBoLJpfzmrdpVSXuXH5bDIz8tkYJdsPC5HosMzkoCIbGnO8a0myRiG8V/rCw8yeeYmPli8ExGwRAgE9dBjry/AsF7tuHVCH07t3xHLkkSHbKQok2QMoxWprA7w//6zin8VbMMXCBII1r/vvE0HWL6jhN55mTxz5TDy8zLx+gJ8umwX/5izhT2lXhyW0CcvkxvH9WFcv7yIk5GqImISWEsmrWXG/4gRI9Q0lxmt2Z5SL5dOms3eg1V4fQ1klyNYAmlOB1eP6smbc7cCUF4dOGyfTLeDNh4nz18zgqE9cuo91/6yKt6ev5V/zNnCvrJqgkHF43Iwpl8uE8f1YWTv9ibpJBkRWaCqI5p8vEkyhtHyHSiv5tynZlJ4sIpAMHav+XSXg9duHMmI/PaHbfcHgvzuo5W8XbANC/D6D09yAqS7HeS1SePFa0cwoHNWzGI0ItPcJGOGMBtGC6eq3Pevxewri22CAaj0Bbj+5fmUVfkPbfMHgtz4agHvLNhGtT94VIIBUKCiOsDWAxWc9/RMHp26mhU7S/A11J5npATTJ2MYLdxnK3Yzd9MBfIH4tFoEVJmycDvXjM4H4DcfrmDepv1UhtlE5wsoz36zgZdnb8LnV3p3yOS6MflcNLQbmWnmLSvVmDsZw2jhHvtsDZVH9KHEUkV1gOenbwSgsNTLOwu2h51gaqusDuIPKuv2lPHHT1Yx4g9f8L/vLaOw1BvtkI0YMknGMFqw5TtK2Fkc/zflnSWVeH0BXp+7hWj0+1ZUB6j0BXinYBunPv4N7y7YHpXzGrFnkoxhtGDfbdxPIAFvxk7LorzKzwvTN0a1mc4fVCqqAzz4wXKunDyXA+XVUTu3ERsmyRhGCzZ34wGq6+hojzV/MMj97yyps5M/GiqrAxRsPsD5T89kd4lpPktmJskYRgu2s6QyIddtm+5i9oZ9Mb2GL6DsLq3iomdmsfdgVUyvZTSdSTKG0YIlotvCaQnlVQGq/LG/eCCo7Cur4ooXvzPDnZOUSTKG0YJ1buuJ6/WcVqgGWnUc3/D9QWXTvnJue30BxRWmjybZmCRjGC3YyN7tcTniU6bF7bBQVRIx5isQVL5YVchJf/yCO99cyNLtxQmIwqiLSTKG0YKN6pOLyxH9l7nTLoQphOqWZbodDOjc5tD2RPEFlI+X7uJHz3/HOU/OZN2egwmNxzAz/g0jblSVgi1FzFq3j+827WftnjIqqwOIhGp+Deicxcm9cznlmDyG9cyJSqHIId3b0qFNGlsOVEThNwhxO4Q7Tz+G6kDw0PozE47JY8yfv6IqTlUFGqKEytus2l3K+U9/yx2n9+O2CX1xxiDZGo0zBTINI8aq/AHenreNF2ZspKiimip/oN4S+05LcDst8tqkccuEPlw2vAduZ/PeHN9ftJ0HpiynIgqz/p2WMKZvHv+4ceRh26cs2s6DU5YfVZ05GaS7HfRsl8FrN46kY3Z8+6hagqQvkCkim0VkmYgsFpECe9sQEZljb/9IRLLrOfZuEVkuIitE5J5a2x8WkR32OReLyDmx/j0MoymWbCvm9Men8+f/rGZHcSUV1fUnGPjvZMOtByr4w8erOPOv01mxs6RZMVw4tBsndG8blaYst9PisctOOGr7pOkbkzLBQGhOzYa9ZZz79Ldsi+IdnRGeeN0/nqaqQ2tlw8nAL1V1MDAF+PmRB4jIIOBmYCQwBDhPRPrV2uWv9jmHquqnMY7fMCL2zNfr+dELc9hRXEmlL/I34EpfgK37K7jkudlMnrmxyXGICE/9+ERyMlw0J894XBb/96OhdDribqC8ys+GwrKmnzgO/EFlf1kVP3x2FntM7bO4SlQjZX9ghv34c+CSOvY5DpirqhWq6gemAxfHKT7DaJY//2cVf/tqfUSLg9VFAa8vyBPT1vJ/X6xt8nk6ZnuYcvtYOrRJIy3C5jchlGAeu3QIZx3f+aifr9xVSrrL0eTY4iWoUFTh4/Ln5+BtQtI3miYeSUaBaSKyQEQm2ttWABfajy8DetRx3HJgnIjkikgGcM4R+/1URJaKyN9FpF2sgjeMSL06exOvzt7SpLuX+lT6Ajw/fQP/nL+tyefo0T6Dz382gR8M6ky6yxHWXU2G20F+XiZTbh/L+UO61rnPsu0lcZ0X0xyBoLKn1Mvjn61JdCitRsw7/kWkm6ruEJGOhO5a7gQKgaeAXOBD4C5Vza3j2BuB24FyQompSlXvEZFOwD5CCez3QBdVvaGO4ycCEwF69uw5fMuWLbH4FY1WRlVZsbOUBVuKmL/5ADuKKwkGlbbpLvp0aMMbc7fEbO2WdJeDL342gW456c06z5JtxbwwYyPTVu4mzekgEFT8wSAOEVwOC68/QL+Obbh1Ql/OGdylwWHQ97y9mPcX72hWPPHmcVr885bRDGlgqWgjJKWWXxaRh4EyVX281rb+wOuqOrLeA0P7/QnYrqrPHrE9H/hYVQc1dLwZXWY0ly8Q5F8F23h++sZDq0xWxbn4pMMShvbI4d+3jo7KEGevL8Ca3QdZvbuUg14/bqdF77xMBnVtS7tMd1jnuOnV+XyxqrDZscRbt5x0pv/8VDO0uRHNTTIxnScjIpmApaoH7cdnAb8TkY6qWigiFvAgMKme42v260moP2aUvb2Lqu6yd/shoaY1w2iQPxBk/d4y9pdVowpZHicDOmfhCaM/YeXOUm5/YwF7Squi2gwWqUBQWbWrlEXbihnWs/mtxB6XgyE9cpr1iT5eK25GW3FFNV+tLqyzn8mInlhPxuwETLE/cTmBN1V1qj00+Q57n/eAlwFEpCswWVVrhiS/KyK5gA+4Q1WL7e2PishQQs1lm4FbYvx7GCmqrMrPlIXbee27LWzaV47baWHZdwCqoU/ynbI9XDysG1eP6nXUyCmA9xZu54Epy6jyBRNSMuVIXl+AyTM28uzVwxMdCkBKdPrXpbw6wKTpG0ySiTEzGdNokfyBIM99s4FnvlmPJdLoRMQ0p4UC5w7uwm8vPJ5sjwuADxbt4H/eW9rsUWLR5nZaLHrozKRY8/6Pn6xk8rebElLxubnSnBZT7xlP77zMRIeStJJ+MqZhxNvmfeWc/eRMnv1mA15fMKyZ7lX+INX+IJ8u28WER79m9oZ9rC8sS8oEA6FilCt3lSY6DPyBIHlt0nCnaL9GIKi8U9D0EXtG4xL/McgwomjN7oNcNmk2B6v8TfpkXeUPUuUPcv3L88hrk5aQVSXD4QsEWbq9hJPy28f92tX+IJ+t2M2LMzeyalcpTofEfQBEtPiDypyN+xMdRotmkozRYuwp9XL583Mo9fqbfa4qv7KjOHlnhlf5g6xsZrmZSAWCygszNvLsN+sJqlJeFbpDTNWO/xprdh9EVaMyWs84mkkyRougqtz99iLKq5qfYFJFNApehmt94UFuf2Mh24oqqUzSGmVNFQwqO0u8zZ57ZNTNJBmjRfhg8Q6WbivBH0ztT9WRaG515nB9snQnP3tnKVX+QEp27jfG5bTYUFhmkkyMmCRjpDxV5Ylpa6loRfWoLIEucVha+f1FO/hlkg5+iBZVEjr3qaUzScZIeQu2FLG/vHWt7Z7hdjK0mSVRVJXtRZXsLK7E6w8i2GuvtM+gU7aH2ev3tfgEE6L4U7xfKZmZJGOkvKnLd7e6qrr+QJBB3dpGfNy6PQd5d+F25mwIrcyp6FF1yar9oRUvK30BAq2g+VGQiCtTG+EzScZIeXM3HaAVvBceplO2J+w+BF8gyLQVe5g0fT3rCsvwBYKHLZxW151Kqg5Jbqp2ma5Eh9BimSRjpLyNe5N7waxoy3A7uGVCn7CG3C7ZVsztbyykuKI6aVeuTLRKX4BjO9e5OK8RBSbJGCnP28o+dVsiXHRitwb3qfIHePyzNbz23ZZW0KfSPHlt0pKiPE9LZf6yRsqzBFrLZ/R0l4M//XAQGe76X7rFFdVc/vwcth6oMAkmDEN6RN63ZYTP9HYZKS8nPbx1T1KdyyGclN+u3hUqAQ6UV3P+09+yaV+5STBhyHA7OOO4TokOo0UzScZIeYO6tfz2dKcldMtJ5+krhtXbF1NW5eeySbPZXeJN+VIv8aIK559Qf9I2ms80lxlJb19ZFTPX7aWsKkCHNm5OHdDxsIXGxvbLY/aG/S12RFSa06JrTjr/vnU0bTPqHwX14JRlbC+qxNfahto1kdMSLh3enXR3aq6HkypMkjGS1r6yKn41ZRnfrNmL0xICqjgti6AqV57ck198/1jcTosLhnbl0alrEh1uTHhcFued0JWHLzieNg10Tk9fu5epK3a32EQbCw5LuH5sfqLDaPFMkjGSUuFBL+c/9S37y6vxB5WqQz8JvYm+/t0Wlm8v4bWbTqZjlofx/fP4anVhi5gvIxLq4M/NdPPnS05gbL+8Bvcv9fq45+1Fpg8mAmlOi/OHdKVPhzaJDqXFM0nGSEr3/nPxoQRTF68vyOLtxbwwYyN3nNaPX507kG/X70u5N1oBXA4Lt9PCFwjidliM6pvLxPF9GNGrXVhzYV7+dlNcKzK3BG3SnDx8wfGJDqNVMEnGSDrbDlRQsLmo0YrKXl+Ql77dxK0T+tI7L5P7zuzPXz9fl1LFDhVQFEvgL5cP4dwIO6H9gSAvz95smski4HFZPH3FiQ02PxrRY0aXGUln2so9hNvqVe0PsGR7MQA3ndKHsf1y8bhS62ntCyilXj8/e2cJT0xbg0ZQT/+r1YX4AibBhCvNaXHNqF6MaaQJ0oie1Ho1Gq1CcUV12MseiwgllT4ALEt47urhTOjfgXRX6o0Y8vqCTJ65iSemrQ37mL/P2nRohUqjcf5AkDfmbuXiZ2fxTsG2VldYNRFMkjGSTrsMd9hVcYOqtMv472RMl8Ni0tXDeeCc40h3OXCk2Iq6lb4AL327ka9XFza6r6qyZFt8l2BOdQENrSi6cGsxD3+4gmG//5xH/rPKJJsYMknGSDrfH9Q57H09TgeDjyh5LyJcM7oXn983notO7Eaa0yIjheZCVPqC3PvPxYfu0OqzvagSDbth0ThSeXWAiuoAL8/ezOmPf8PCrUWJDqlFMknGSDrdctIZ1ScXl9XwbUi6y2Li+D446tmve7sMnrh8KPMf/B6/u3AQPzqpB8d0bENuppt2DUxqTAaVvgCTZ25scJ9lO0pwNvI3Mhrn9QXZWeLlyhe/498F2xIdTotjhlcYSekvlw/h/Ke/ZW9ZVZ0lUtJdDkbkt+PGU3o3eq5sj4tLh3fn0uHdD21bsq2YqybPpazKH9W4o6XKH+Qfc7Zw9xnH4HTU/Vlw075yM3Q5iry+IA9+sBxLhItrPVeM5jF3MkZSym2Txid3jeOcQV1Ic1pkpjnIcDlok+akTZqTG0/pzcvXnVTvG3Bjlu0oocqf3G/QgaAyb9OBen9e5vW3iMmnycTrC/LA+8tYvsP0dUWLuZMxkla7TDdPXnEiJRU+Zm3YR1mVnw5t0hjbLw93M5fL3ZMCRSSr7OHZ9Q239QfN0OVY8PqC3P7GQr64b0Kzn2dGHO5kRGSziCwTkcUiUmBvGyIic+ztH4lInWV0ReRuEVkuIitE5J46fv4zEVERMYPeW7C2GS7OGdyFy0f04LRjO0blhT9j/d4oRBZbvoDy9eq9bNxbVufoJ7PQVuzsPVjFpOnrEx1GixCvZ+lpqrqv1veTgftVdbqI3AD8HHio9gEiMgi4GRgJVANTReRjVV1v/7wHcBawNR6/gNFy/HP+NpamyNDfgi0HOP/pb6nyB+nS1sPQnjmcM6gL3xvYiY5ZHtJdjpSqcJAqQgMvNnHbqf1wNbFJ1ghJ1F+vPzDDfvw5cEkd+xwHzFXVClX1A9OBi2v9/K/AL8CM4TTCt+1ABQ9/uCJlnjRBDQ219QeVbUWVfLRkF/f/ewnDf/85S7YVYQaXxU5AlS9W7kl0GCkvHklGgWkiskBEJtrbVgAX2o8vA3rUcdxyYJyI5IpIBnBOzX4iciGwQ1WXNHRhEZkoIgUiUrB3b/I3jxixpar89M2FVKX4J//yqgClXj9TFu2g3Iwui5nyqgDvLNie6DBSXthJRkKuFpFf29/3FJGRYRx6iqoOA34A3CEi44EbgNtFZAGQRag57DCqugp4BJgGTAUWAwE74TwA/LqxC6vqC6o6QlVHdOjQIazf02i55mzYz7rCMlpKd3l1kg9caAmWmVFmzRbJncyzwGjgCvv7g8AzjR2kqjvsfwuBKcBIVV2tqmep6nDgLWBDPce+pKrDVXU8UASsBfoCvYElIrIZ6A4sFJHwp4kbrdLzMzaaeSVGRIrKqyn1Nlx5wWhYJEnmZFW9A/ACqGoR4G7oABHJFJGsmseEOuqXi0hHe5sFPAhMquf4mv16EuqPeVNVl6lqR1XNV9V8YDswTFV3R/C7GK1McUU1czbsT3QYRopJc1rsPVjV+I5GvSIZXeYTEQd2R7uIdIBGWx46AVPshZechJLEVHto8h32Pu8BL9vn7ApMVtVz7J+9KyK5gA+4Q1WLI4jXaGH8gSAz1u1l24FKKqoDZHmcDOrWliHd2za6uNfS7SWkOS2qTVl8IwIiYpZSaKZIksxThJq7OorIH4FLCd2F1EtVNwJD6tj+JPBkHdt3Eurgr/l+XGNB2XczRoTKq/x8t3E/B8qrUQ3NRRmZ3552mQ3enCZEYamX177bwj/mbCEQDOILKIGg4nQIgtApO43bTu3LBUO6kV5PIcwl24vNUF8jYkFV0pypU1w1GYWdZFT1Dbuj/gxCq8ZeZHfOGylk3Z6DvPTtJj5YvBOHJQRVQUNrsfgCQc4c2Imbx/VhSI+cRIcKwLfr9jHxtQICQT1q9cealTM376/gtx+t5Omv1vP2xFF0b5dx1HlW7z7Y6EqbhnGkan+QbjnpiQ4jpTWaZESkfa1vCwl11B/6marWX1zJSBrBoPL7j1fy1ryt+IJB6msB+HTZLr5cVcipAzrwfz8emtBPcTPX7eXmfxTg9TXeXFFRHaDK5+WCv83i07vG0bmt57Cfp/qwZSMxurdLN6Vlmimcv94CoMD+dy+hEV7r7McLYheaES2qyt1vL+Lt+dvw+utPMBCa/FfpC/D1mkKunjw37BUqo21ncSW3vLYgrARTI6BKSaWPqyZ/d9QSxmbWthEpS2Bk7/aN72g0qNFXnqr2VtU+wBfA+aqap6q5wHmE5rAYSe7JL9bxxarCiPokvL4gy3aU8It/L41hZPV7dfbmJnW4BoLKrhIvs48YSdY7L9PMjjcikuZ0cPWoXokOI+VF8vFulKp+WvONqv4HGBP9kIxoKqvyM2nGhiZ1ent9Qf6zfBfbDlTEILL6VfkDvDF3a5OrJFdUB3h++uFTr4b0yCHDbQpKGuHrmuPhhO45iQ4j5UWSZHaKyIMikm9//QrYGavAjOh4f9F2rEaG9zYkqMqrczZHL6AwfLWq8KjmrkjN2bifwoPeQ98P6Z5jhqIaYUt3OfjlD45LdBgtQiRJ5gqgA6FhzFOAjvx39r+RhFSVSdObN8vdF1Demrctrgt8bd5fUWdp+0j4AsqoP33JtS/NZdb6fXTKTuOYTm2iFKHRkrkdwrhj8jhzYKdEh9IiRDKE+QBwdwxjMaKsojrArhJv4zs2Stmyv4L+nbKicK7GlVf5iUZZrqDCjHX7KNhSRP9Obbh2dC9+++FKU1TSqJcQWqfnkUtOSHQoLUbYSUZEvqaOsvqqenpUIzKiptTrw+0QKps5P8QSobQyfvWbstOdOC2J2ryWiuoAK3eW8uKMTWR5nCbJGHUSgTZpTt65dXRSTkpOVZH0hN5f67GH0Bow/uiGY0ST22FFZw14Ja5zBY7tnE2a08IfxWRQHVA27itneK8ciiqqqfKbiZnGf6U5LbLTXbw9cRR9O5hm1WiKpLnsyDkxs0RkXpTjMaIoO90VmtHfTNWBIHlt0qIQUXhO6Zdnz2uJ7h1HIKjM21SEQ8AhRKVJzkhtAqS5LC4a2o2HzhtolrSOgUiay2rPSrKA4UDbqEdkRI3LYXHGsR35bOUempNr+nZoQ9c4ldZQVZ6bvoGyqtjdJAc01DRitF4ep4UCo/vkcucZxzC8V7tGjwkElU37yli2o4RdJV58fsXlFLq09TC4Ww598jKxzGSso0SSthcQ6pMRQs1km4AbYxGUET03j+/LjHX7mjzCLDPNwa2n9o1yVPV77LM1vDxrc8zrjEXhBs9IQQL0ys3gujH5/GBwFzplexrcX1WZv7mI52dsYOa6fTgtQQCvL0BAQ3fEHrcD1VAtvQn9O3DL+D4M79Wu0crgrUUkSeY4VT1sqJKIxK8NxWiSYT1z6JiVxub9TZtQaYlw9vHxWQ/ug0U7+PusTRGVkokWoY5RLUaLo8DuUi/HdMpqNMHM33yAn/1rCfvKqqisDqAcvYRvQEPLNNf4YtUeZq3fR8esNJ64fAjDe5myNJH05s6uY9ucaAVixIaI8NzVw8mopwR+Qzwui0lXD49Lp7+q8v/+szohCQZMgmlNvL4gd721qN66fJXVAR6csoxrXprL1gMVVNgJJhyqodGMm/dXcNXkufz6g+XNnvOV6hp99xCRziIyHEgXkRNFZJj9dSpwdE11I+kc1yWbl687iUy3g3Bv4D0uiycuG8LYfnkxja3GnA37zTK3Rtx4fQGmrjh6Md2i8mou+Nu3/HvB9mZ/4PH6gvxr/jYufGYWJRWt97kdzkfU7wOPA92BvwBP2F/3AQ/ELjQjmk7uk8v7d4xlWK92pDktXHV0UDosId1lcWznLF6/8WTOPaFr3OJ7fsaGZlUmMIxIlFcHmDxj42HbSr0+Ln5uNpv3l+ONUvVxrz/Ixr1lXDJpNgdb6YeoRvtkVPVV4FURuURV341DTEaMHNMpi3dvG8PmfeW8MnszHy/dSVmVH1XIcDs4/diO3HhKHwZ2zY57bN9tNMsSGfG1ancp/kAQp8NCVbn1tQXsKKpscmHW+vgCytYDFdzxxkJevWFkqxsQEM6iZVer6utAvojcd+TPVfUvMYnMiJn8vEwevuB4Hr7g+ESHAoA/EKTaFK804sztsNi4r5z+nbJ4d+F2Fm0rjtnzsNofZP7mIj5cvJMLT+wWk2skq3BGl2Xa/9Y1Ddb0lxqGkZIsSyiu8LGvrIpff7CCyhg311b6Ajzw/jLG9e9A+0w3qsq8TQdYW1iGPxCkU7aH0wZ0JL0Jg3SSWTjNZc/bD79Q1Vm1fyYiY2MSldGqOB0WbodFVYJW4TRaL0vgje+2EIjxvKwagYDy5tzNZHvcPDt9AwcrfQSCigIuhxAIwqXDu3Pvmf1p30Lqp0UyT+ZpYFgY24wEUlUWbCliw94yggrdctIZ2y8PR5LPRB7Zuz0z1+1LdBhGK1LtD9I528PLszfH7QOO1x/kyS/X47SEyiNGr9UUuXh73lY+W7Gb924fQ/d2qT+AN5w+mdGEVsDscESfTDbQsu7rUpiq8ua8rTzz9XqKK3yHZrQ7LMHpEK4f05tbT+1DmjM5/8tuGd+XhVuKTIVkI27cDosNe8vwx7mInS+gDQ4u8AWVfWVV/Oj5OXxx36kp33wWzhBmN6H+GCeQVeurFLg0dqEZ4QoGlZ++tYg/fLyKncVeKqoDVPpCX2VVfoorfDw3fT0/en4OFdXJWTh7TN9c2nhMcUIjfjwui4+X7qQyCV8TQYWiCh8fLtmR6FCaTcJd5lZEeqnqlhjHEzMjRozQgoKCRIcRE3/8ZCWvf7eVykZmFqc5Lcb0zeXl60fGKbLITFm4nQemLDuqGcEwYiXZywnl52bw9f2nJnTYs4gsUNURTT0+knohFSLymIh8KiJf1Xw19cJGdJR6ffxjzpZGEwxAlT/InA37WV94MA6RRe6Hw7rzkzH5pLtSu3nASB3JnGAAdpV42XuwKtFhNEskSeYNYDXQG/gtsBmYH4OYjAi8W7AdK4JPOb5gkMkzN8Uwoub5n7OP5bZT+5Lucphy/Ear53QIpd7ka86LRCRJJldVXwJ8qjpdVW8AGl16WUQ2i8gyEVksIgX2tiEiMsfe/pGI1DnFXETuFpHlIrJCRO6ptf33IrLUPuc0EYlf/ZMk89XqwrDuYmoEgjBj3d4YRtQ8IsJdZxzDGzefzJkDO5HmtEiL46qchpFMAkFtUnHbZBJJT2tN4Z1dInIusBMIt471aapae3zqZOB+VZ0uIjcAPwceqn2AiAwCbgZGEqqwPVVEPlbV9cBjqvqQvd9dwK+BWyP4XVqM8iZ0Wiaq0nEkhvVsxwvXjGBfWRXvFGxj5a5Siit8eKsDzN9SlOjwDCMustJcdG5kSYJkF0mS+YOItAV+Rmh+TDZwbxOv2x+YYT/+HPiMI5IMcBwwV1UrAERkOnAx8KiqltbaL5Pkb1qNmdzMyJf0yU6hUVx5bdK47dR+h75/5ut1JskYrYLHZXHTuN4pv9pm2O0Qqvqxqpao6nJVPU1Vh6vqh+EcCkwTkQUiMtHetgK40H58GdCjjuOWA+NEJFdEMoBzau8nIn8UkW3AVYTuZI4iIhNFpEBECvbuTd4moub44bBuZKaFfzud5rS4eFj3GEYUW5+v3JPoEAwjLtwOix+dVNdbY2oJZzLm0zRwp6CqdzVyilNUdYeIdAQ+F5HVwA3AUyLyEPAhRy84h6quEpFHgGlAObAYCNT6+a+AX4nI/wI/BX5TxzleAF6A0BDmRuJMSWcO7IQjwh7yK0/uGaNoYsvrC7B4W0miwzCMuLh4WHdyMlK/tEw4dzIFwIIGvhqkqjvsfwuBKcBIVV2tqmep6nDgLWBDPce+ZN8xjQeKgLV17PYGcEkYv0eL5HJY/P7CQXhcjf9XprscTBzfh7w2qblq9oNTlic6BMOIm5lJPEAnEuGuJ9MoEXlaVe88YlsmYKnqQfvxWcDvRKSjqhaKiAU8CEyq55w1+/Uk1B8zyt5+jKqus3e7kNDQ6lbrwhO7Uer18cdPV+EL6FHF/gTwuBz8eGQP7juzf2KCbKZgUJmyOPVnPxtGuIpbyGqa0ewBrqsicydgij1b1Qm8qapT7aHJd9j7vAe8DGAPRZ6squfYP3tXRHIJjWy7Q1WL7e1/FpEBQBDYQisdWVbbNaPzOal3e16csZGPl+7CaQkI+PzKKcfkceuEvozsHe5gwOTz9vytcauUaxjJwBdM/lGg4Qi7rEyjJxJZqKpJW5G5JZeVOVJFtZ9dJV5UlQ5ZHtqmuxIdUrNdNmk28zebUWVG69E1x8PsX56R6DCaXVYmdcayGmHLcDvp26GuNeZS18a95YkOwTDixhIY2iMn0WFERTSnUqf2YG4jqRVVHDUA0TCizmEJLkfi38rSnA5uHtcn0WFERTSTzJNRPJdhHOIPBDHdMUY8OEQ4pV9ewou0dspOazF3MmE3l4lIf0LlX3rVPk5VT7f/fSXawRkGhEaWGUY8pLks/n7dSbxTsJ2HP1pBlT9AIM797x6XxX1nDUhoef9oiqRP5h1CQ41fpNakSCN5HPT6mL52Lwu3FLN0ezEV1QE8LotB3doyrGc7Th3QIWUmd207UMHr323hy1WFbDlg+mOM2BNgVJ9cRITLT+rB+P4d+O1HK/hy1R4CQSUeC2gK8OOTenDBkMhq/q7bc5BX52xm9a6DVAeCtM90c9HQbvxgcOeEr4YbyaJlC+zJkympJY8uKyz18vi0NXy4ZCcOy6Ki2k/t/1YBMtwO/EHlrIGd+Pn3j6VnbnKuHV6w+QCPT1vDoq3FBLXhZWoNI5oy3A5evu4kTu6Te2hbqdfHZZPmsKGwDH8c7qjH9s3ltRtPDrte2bLtJfzve0tZX1iGLxg87K4r0+0AEW4Ym8893+uPo4k10OI5uuwjEbmd0Kz9Q6voqOqBpl7caL4pC7fzq/eXU+0P2i+Co+/tFSivDt18frpsN1+s2sP/nH0sPxmTnzS35BXVfn730UreX7wjJapEGy1P+0z3YXPJfIEgV704N24Jxu20eOHaEWEnmG/X7ePmfxTUu9RHzWt+8sxNLN1ewuSfjMDliP+yGZEkmZ/Y//681jYFWsYQiBT06NTVvDxrc2TryahS6VMembqGlbtKeeSSExKeaJbvKOH6l+dT6vVR5TcJxog/j1P4/UWDDnst/N/na1m5qzQuk4A9LotJVw8nMy28t+S1ew4y8bX6E0xtlb4A8zbt54H3lvHYZUOaG2rEIqnC3LuOL5NgEuSFGRsiTjC1VfoCfLRkF//vP4mtyFOw+QCXPz+HvWVVJsEYCXPmwM6cNqDjoe/X7CrluekbYp5g0pwW6W4Hz1w5jFNrXb8xj322JqLXfqUvyIdLdrLtQEVTwmyWSEaXuYDbgPH2pm+A51W1ZRTYSSHr9hzkL5+vbXazUqUvwOSZG6nyB5g4vi/dctKjFGF4lu8o4dq/z6Oi2owjMRIn3WXxhx8OPmzbHW8uiumweUtCfSY/GdOba0b3olMEC5PtPVjFjLV7ibRYS1CVV+ds5sFzB0YYbfNE0lz2HOACnrW/v8bedlO0gzIadu+/FkftU39Q4dXZW3h73jaG92rHA+ccx6BubaNy7oaUV/m57mWTYIzEe+KyIYeVXvp2/V7W7y2L2fX65GXy50sGc2LPdk3qI/loyc4mXdcXUP45f1tSJ5mTVLV2g95XIrIk2gEZDVuxs4QNhWURf4ppTJU/yOwN+7n0udlcP7Y3957ZH7czdp2Ev/t4JQe9kS8dbRjRVlGr2ckfCHLXm4tier3+Hdswsndu4zvWY9uBiiZ/yCyr8uMLBOM6ACCSJBMQkb6qugFARPpg5svE3evfbaU6hsN6vf4gL8/exLfr9zGke1sWbSumtNKHZQk56S7OHNiJK0b2JLcZa9LM23SADxbvMH0wRlL4clUhlw4PrUD5xapCDlbF9sPPF6sL2VdW1eR1nQLN+IQphJrN4imSJPNz4GsR2Ugo1l7A9TGJyqjXnA37Yt4Z6fUFWbajhOU7Sg5bEnULsGb3QZ7+aj2nDejAHacdw+DukTetPTFtjRmmbCQNX63JJZOmb4jL3Kw3527lrjOOadKxXXPScTmkSXGmOR1xn5wZyeiyL4FjgLuAO4EBqvp1rAIzjuYPBNleVBm369X1FPb6g1T5g3y2cg+XPT+bt+Ztjeic2w5UsHhbcVTiM4zmEuDEnu0AKCqvZsXO2C/v7Q8q7xRsa/Lx5w7ugtWEaQcOgfOHdGnydZuq0SQjIqfb/14MnAv0s7/OtbcZcVJeHSBJ5k6iGrrj+d1HK3h51qawj3t1zua4364bRn1EQmVcAJbtKMETp0/5u0q8eJs4/aBH+4wmFc90OS1uPCX+s07CuZOZYP97fh1f58UoLqMODkui3uHfXJW+II9MXc3XawrD2v+rVYWmVIyRNK4+udeh/sVlO0qaPO8sUh6Xg1W7Spt8/C/OHoDHFX7nfZrTYmR+ewZ0zmryNZuq0T4ZVf2N/fB3qnrYR1YR6R2TqIw6ZbodOB0SlxIXkfD6gvz+o5WHTWariy8QZFtR/CeDGUZdstKc/OaC4w99v7O4Mm6vLQH2lzV9jaThvdrzh4sG8+CUZXgbGUCT5rTIz8vkuasTU3oyknFs79ax7d/RCsRonIjQL0lXvNxV4mVJI30ta/ccjOmwaMMIl8dlcftpfQ8rGhmP8jE1FJqd0C4d3p1nrx5GbqY7VAzzCGlOC7fT4syBnXj/9rFhl6yJtkavKiLHAscDbY/og8kGwp+makTFmQM7sa6wLOmG/3p9AR58fxk/GdObrm09nNwn96iqrzuLvU3qsDSMaGuf4eb6sYc3xGSnx+9NWAQy05rf/3P6sZ2Y96vvMWPtXl6cuZFN+8rxBYJkeVxcOKQrV47qScesxL5Nh/NXHUCo7yWHUD9MjYPAzTGIyWjAFSf35JlvNiQ6jKMosGxHKb/+YDmWCG6nxfVj87liZM9D8wGq/AHCXVrCMGLF47L421XD8Byx+uVxXbLJdDsOVS+OpWp/kP6dotM/4rCE047tyGnHhl/7LJ7C6ZP5APhAREar6pw4xGQ0oGOWh3MHd+HTZbuS7m4G+G+ZmCp45uv1TPpmAy9eO4Ix/fJwWkKoNdowEiPNaXHHqf0YZg9brm1wt7Z1DtuPBbfTiqheWSqL5P5wkYjcQajp7NBfR1VviHpURoMevuB4vllTmJRJpraaCZc3vDqfydeeRJbHlTRDsI3W6drRvfjp6f3q/FnvvDb2B6HYqlmBs7WIpBf2NaAz8H1gOtCdUJOZEWdt0108f80I0l2JXVY1XF5fkImvFVDm9VEe45IdhlGfgV2y+NW5A+tdP8lhCdeOzictxoNT0t0Obh7XelZJieSv2U9VHwLKVfVVQhMzT45NWEZjRvZuz+SfjCCjjlElyaiiOsDtbyyMafl0w6hPmtPij0eU86/LNaN7xTyW3Ew3J+Uf3VzXUkWSZGrWjSkWkUFAWyA5e5qioGDzAW7+RwFDfjuNEx7+jB89P4evVu8hmETvkmP75TH17vG0SdDQxEiZOZhGopw2oMOh8jEN6ZTtYeL4PjFrJfC4LJ64fGjCV6ONp0iSzAsi0g54EPgQWAk8EpOoEkhV+fUHy7nmpXl8sWoPJZU+Sr1+5m46wE/fXMQNr86nOon6QnrmZvD0lSfiaD3PWcOI2Andc8Le964zjqFz2zSi3T3jcVpcfGJ3RvZuH90TJ7lIksyXqlqkqjNUtY+qdgSmNXaQiGwWkWUislhECuxtQ0Rkjr39IxHJrufYu0VkuYisEJF7am1/TERWi8hSEZkiIjkR/B4NemX2Zt4p2E6lL3BUCZeK6gDfbdzPbz5cHq3LRcWEYzqQk+lOdBiGkbSe/HIdZWGuX+RyWLxy/UiyPM6ojYV0O4T+nbP49fnxXTAsGcRrxv9pqjpUVUfY308Gfqmqg4EphJYROIzdJHczMBIYApwnIjXDQj4HBqnqCcBa4H/D/zXqFwgqT325rsH6RV5fkPcW7qC4ouklIaLNsoSnf3wiZjK9YdStyh/klEe+ZMGWA2Ht3ys3k3dvG0NOhqvZI848LouBXbN58+ZRR83NaQ3CqcJ8rIhcgj3jv9bXdTR9xn9/YIb9+HPgkjr2OQ6Yq6oVquonNKLtYgBVnWZvA/iO0Ei3Zlu4tYjqQONNYQ5LmLZiTzQuGTVj+uXxzJXDon6LbxgtRXGln6smz+XRqavDmhTcr2MWn907nlF9cpvcR+NxWVw3Jp9/3jI6ZfpOoy0eM/4VmCYiCjyvqi8AK4ALgfeBy4AedRy3HPijiOQClcA5QEEd+90A/LOuC4vIRGAiQM+ePRsN9EB5NRLGDXK1P8iBJLqTqfH9QV14/46xXPPSXEoqzVBhwziS1xfkpW83UbC5iHMGdybN5aBPXibHd2tbZxLomOXhtRtH8uHinfx56mpKKn1UVgcanLTptASHJRzbOYs/XDS4SQv7tSQSbpmPps74F5FuqrpDRDoSumu5EygEngJyCQ0iuEtVj5qdJCI3ArcD5YQSU5Wq3lPr578CRgAXayO/yIgRI7SgoK4c9V8Lthzg2r/Po7yq4bISGW4Hv7twEJcOj8oNVNSVV/m55bUC5m0uSqpBCoaRTCwJrRTpdAiVvgBDe+Rw6/i+nH5sR6w6mgRUlTkb9/PW3K0s2FpEYWkVbqeFCASD4A8Gyc/NZGy/PK4e1Yt+HZOzmG2kRGRBra6OyI+PIMk8CvyB0F3FVOAE4F5VfT3si4k8DJSp6uO1tvUHXlfVkY0c+ydgu6o+a39/HXALcIaqNlo/PpwkEwwqI//0BfsaKcGd5rSY/+D3yPa4GrtswqgqHy/dxQNTlhEMalzqMRlGqstwOzimUxv+dsUwerTPaHDfimo/haVV+INB0pwOurT14HS0vI7R5iaZSP4iZ6lqKaGms82EVsc8qsP+iOAyRSSr5jFwFrDcvqtBRCxCQ6In1XN8zX49CfXHvGl/fzbwC+CCcBJMuCxLuOd7/Rtsf013WVwxsmdSJxgILQtw/pCuFDz4Pf508WBO6NYWlxnnbBgNqqgOsHxHKd//vxnM3rCvwX0z3E7y8zLp1zGLHu0zWmSCiYZI/io176rnAu+oajiLYXcCvhWRJcA84BNVnQpcISJrgdXATuBlABHpKiKf1jr+XRFZCXwE3KGqxfb2vwFZwOf20Og6k1RTXHVyT64bm4/HZeGoNWFKCH3KOXVARx4897hoXS7m0pwOLhzajQ/vPIXVv/8BN4/rjdu8GAyjXoGgUlEd4MZXCli4tSjR4aS8SJrL/gxcRKi5bCShgQAfq2pKlJYJp7mstuU7Spg8cyNzNu4nqDCoazYTx/dlVJ/2KT1bNxhULnpmFqt2lzZ5GWSHJaS7LMoa6bsyjFTXoU0a039xKhnu1jkyDOLYJ2NfrD1QoqoBu/krS1V32z87U1U/b2ogsRZpkmnJiiuq+eGzs9lRVBnWkO3aHBa0z0zj/TvGctOr81m1y9RINVouj9Pi8pN68LsLByU6lISJZ58MqnpAVQP24/KaBGNrcSVmWqqcDDfv3zGWcf3zIhr/n+52MLRHOz658xS65aTzi7OPTZlK0IbRFF5/kH8VbKPMVA9vsmjeA6ZuG1Ir1DbdxUs/OYmpy3fx/z5dTWFZFdX+AEfe2FgC6S4HbTxO7v1ef350Uo9DzYWnDejIT0/vx9++WkelzwyVNlqmYBB++e5SBndri9NhkZvpZlC3tvTJy6xzqLNxuIiayxo8kchCVR0WlZPFgGkuq5+qsmhbMTPX7uO7jfvZXepFVclrk8aoPrmM6ZfL6D659fZF/atgG3/4eCWBOoZKZ7gdBIJKMKj4kqiCtWFEwhKwRBABt8NCAX9QOalXOyZO6Mu4fnlHJZzdJV4WbS1i4dYitu6vIKBKu0w3J/Zoxwnd2zKwS3ZKJKm49sk0EohJMq2YLxBk2oo9vP7dFnaVVuIQIT83k+vH9mZM31x2llRy99uLWbDFjNYxWpZMt4PMNCe/veB4zh7UmW/W7uW5bzawZFsxLodQUR04bB2ldJcDSyAjzclNp/TmypN7kpXEUyLiORkzTVWr6tsmIu+p6sVNDSTWTJJJvMKDXk555GtThcBokTxOiwy3g0pfsMEiu4cd47LIcDl58oqhjDumQ4wjbJp4dvzXVVLm0LZkTjBGcuiY5WHcMXmHzT8yjJbC6w9yoMIXdoKBUC21AxXVTPzHAh4Js3Bnqmm0419EOgPdgHQROZH/dvBnAw3XXTCMI/zmvOOZtX46AV/LezEZRlNV+gK8Mmszqsovf5A6k73DEc7osu8D1xEqp/8E/00ypcADsQnLaKl65mbwP2cfy2OfraHC1FMzjEMqfQFenb2FEb3a872BnRIdTtQ02lymqq8CZwC3qurpqnqa/XWhqr4X+xCNluYno/M5tnOWKW9jGEeo9AX42TuLk2pRxOYK61WuqkHg3hjHYrQSliW8csNIOuekJToUw0g6Xl+QF2duTHQYURPJR8kvROR+EekhIu1rvmIWmdGiZXtcPHD2QLOSp2Ecocof5LU5W/BFWPIpWUUy4/9H9r931NqmQJ/ohWO0Jmlui4w0J2VeU7LDMGoLqvLdxv1JO6w5EmEnGVXtHctAjNanR7t0Ak2sBG0YLZnXF2TJtuLWlWQARGQQMBDw1GxT1X9EOyijdejXMYvu7dJZV1iW6FAMI6n4g8q8TQcSHUZUhN0nIyK/AZ62v04DHgUuiFFcRivx09P7mUrOhlGHogpfokOIikg6/i8lNJR5t6peDwwB2sYkKqPVuGBIV84Z3NkkGsM4QkspjBFJkqm0hzL7RSQbKAR6xCYso7UQER6/bAi3TuhDhttBhtskG8MA6JTtaXynFBBJkikQkRzgRWABsJC665kZRkREhLu/15+FD53JOYO7mGHNRqvndlqM6pOb6DCiIpLRZbfbDyeJyFQgW1WXxiYsozX6dNkuPl66E7PsjNHauSzhxJ45iQ4jKiLp+P+y5rGqblbVpbW3GUZzbNpXzgNTluE1K2waBtnpLk7skZPoMKIinCrMHkLVlvNEpB2HV2HuFsPYjFYiGFR++uZCs86MYRBa1GziuD71rkSbasJpLrsFuAfoSqgvRgjN9D9IaDizYTTL12sK2bSv3DSTGQaQ18bNlaN6JjqMqAmnCvOT9mz/PwJD7ccvAxsxHf9GFEyavsGU/TcMQitlPnvVcNKczR9ledDrY83ugyzaWsS6PQepTNBrLJIZ/5eq6u9E5BTgdOBx4Dng5JhEZrQKhQe9LNlekugwDCPhPC6LP/1wMIO7N2/64ZJtxbw4cyOfr9yDy2EhEqqFFgzCD0/sxg2n9KZfxzZRirpxkSSZmjR4LvCiqn4iIn+IQUxGK7J0Wwluh2X6Y4xWyyGC22nx6KUncP6Qrk0+T6nXx02vFrBsewlV/gBBDVV0ru1fBdt4b+F2vjewE3+5fChuZ+zXdIrkCjtE5HlC1Zg/FZG0cI4Xkc0iskxEFotIgb1tiIjMsbd/ZE/urOvYu0VkuYisEJF7am2/zN4WFJEREfwORpJZsr2YimpThdlonTLcDo7vls1n94xvdoK58G+zWLytmEpfoN7+TX9Q8fqDfLFyD1dN/i4uH+4iuZO5HDgbeFxVi0WkC/DzMI89TVX31fp+MnC/qk4XkRvs8zxU+wC7GOfNwEigGpgqIh+r6npgOXAx8HwE8RsR2lPq5V8F25ixdi9r95RRUe3HYQld26YzIr8dFw/rzsm92zdrFMyW/RWmw99oFRwCLqeF07Lw+gKM7pvLLeP7MrZfbrNeQ6rKja/MZ0dxZdhJw+sPsmxHCb98byl/uXxok68djkgmY1YA79X6fhewq4nX7Q/MsB9/DnzGEUkGOA6Ya18XEZlOKLE8qqqr7G1NvLzRkKLyah76YDmfr9yDwmFPXF9A2bivnE37yvl46S7aZ7p57NIhjO7btNnJLWVhJsNoiNMSJo7vQ9ecdAZ2zea4ztmkR6mE0sKtxazYWRrxXYnXF+STpbu4/6wBdM1Jj0osdYnHIusKTBORBSIy0d62ArjQfnwZdddAWw6ME5FcEckAzqlnPyOK5mzYz4THvmbait1U+YP1PnEVqKgOsL2okutfmceD7y8n0IRbkixPRKtNGEZKSnNaXDq8O1eP6sWwnu2ilmAAXpyxgUpf00aOqcJrc7ZELZa6xCPJnKKqw4AfAHeIyHjgBuB2EVkAZBFqDjuMfbfyCDANmAos5r+DD8IiIhNFpEBECvbu3du836IVmLV+Hze8Mo9Sr5/qCBYT8/qCvLtgO3e9tYhghIlmcLe2eFzxeBoaRuIEFVyO6D/Piyuq+WrNXrSJTc7VgSCvz93SpA+I4Yr5q1tVd9j/FgJTgJGqulpVz1LV4cBbwIZ6jn1JVYer6nigCFgb4bVfUNURqjqiQ4fUX2EulvaUepn4jwIqm1jWpdIX4KvVhbw0a1NExw3q1hanZZKM0bL5AkE6t41+VeWtBypIa2byqvIHKa2M3do1MX11i0imiGTVPAbOApaLSEd7mwU8CEyq5/ia/XoS6o95M5bxtmb3/WvxUcMdI1XpC/DEtDVs3V8R9jHHd22LNvVjmGGkiJ7tM2JyJ1NeFfhvoa8mcohQVhW7EZ6x/gjZCfhWRJYA84BPVHUqcIWIrAVWAzsJVRBARLqKyKe1jn9XRFYCHwF3qGqxvd8PRWQ7MBr4REQ+i/Hv0aKt2lXKgi1F+KNwy+zzB3nmm/Vh7+92WlwxsicuhxnEYbRMLodwxnEdY3LuNmnOJjeV1QgENaZ9ozHtdVXVjYRW0Dxy+5PAk3Vs30mog7/m+3H1nHcKoaY3Iwr+PmsTvgj6YBoSUPhg8Q5+c/5AMtzhPb1+Miaf1+duiVoMR3JYgsdpHbpTi0YyNYxwWSJcOzo/JufulZfR7BGaGW4H2R5XlCI6mmkMN5ixdm9UO/5clsWyCErF9Gifwa0T+pIegwEALkt48NzjePf2MXz1swk4zYpoRhw5LWFM31x6tM+IyfmzPS7OOr5Tkxf6S3NaXDumF1YMXxcmybRyFdV+9pcdNbivWaoCQZbvLI3omJ+e1o8e7TOimgTSXQ6evOJErh/bm2M7Z9OjfUZMX0yGcaQ0l8Ujl54Q02tMHNe3yQU1Fbj65F7RDegIJsm0ckUVvqh3SFb7g+w96I3oGKfD4vWbTia3jTsqiSbd5eC2U/tyzuAuh7aJCN8/vjMOM4nXiAOPy+LxS4fQMSv6o8pqG9y9LSN7tyctwjpk6S6Ly4f3oGN2bOMzSaaVi9UHe6sJb+Qdszx8dOcp5Odlku5q+mQ1j9PivjP7c9cZxxz1s5vG9cblNEnGiC2Py+LX5w3kB7U+5MTSpKuH06dDm7ATTbrL4uQ+ufz2wuNjHJlJMq1eXps0/MHolnZJdzno2cQ26I5ZHv5z9zhuHtcbj8uK6K4mwx267r9vG8PN4/vUuc/xXdvSq31mk2IzjHBkuB08d9VwroxxM1Rt6W4H7902hvH9O5DmrP9143ZapDktLh7WnZd+chKOODQfm5oerZzLYdGjXQYb95VH7ZyWhCZZNiem+84aEHohfLuJfy/YjtOSUJmbWiNpBMhIcxAIKj3bZ3D7qf04Z3CXRsuX//z7A7jzrUVNLsURKw4LBDGj31Kc0yGcckxe3K+b7nbw4rUj2LC3jJdnbeLdBTsAsKzQMGWXw+KaUb24ZnQvurSNXa2yI0lrmQg3YsQILSgoSHQYSemvn69l0vQNzZ6MWaNdhouCB8+M2qekyuoAS7YXs3xHCYu2FnGwyo/TsujRLp1hvdoxpHsO+XmR3Z3c/GoB36wtjNmw6UhkuB0EVbloaDcuHtada16aG7X/CyP+MtMcPHbpkMP6AxOh2h9kf3kV5VUBsjxOcjPdOJvQ/yoiC1S1yUuqmDsZg6tG9WTS9Dor+0QszWlxwym9o3obnu52MKpPLqP6NK3Sc10eufQEJjz2Nb5A/NeycTkEVejS1sOJPdtxyjF5nDu4C5lpoZfjhP4dmLZyT9zjMqKjvCrApG82JDzJuJ1WXO9Y6mOSjEHHLA/XjOrF63O34G1i7bIamWlOrh/bO0qRxU77TDdPXXEit72+oNm/c7jcDmFgl2yevmIYHbLT8NQxuKHU62Pepv1xiceInbWFB1lfWBbXZY6Tlen4NwD4+dkD6JjladYdSLrL4qkfn0ibtNT47HLagI788aLBcakCnea0GNA5m7cmjqZHbkadCQbg4Q9WNLlIqZFc5mw0HxbAJBnDluZ08PbEUbTPdNOUaTMel8VD5w1MSIdnc1wyvDuPXHxCTBONx2VxQve2/POWUQ2uI7K7xMvHy3aZ/pgWwOsLMn/TgUSHkRRMkjEO6ZqTzid3ncLwCBZVcjmELI+Tp68YFtchm9F04YndePPmUXRp64l6svG4LG4c25s3bhrVaC2317/b0tyCukYSWbS1KNEhJAWTZIzDdMzy8M9bRvOHCwfRvV06GW4H7iNubSyBNmkO0l0OLhveg+k/P40zB3ZKUMTRMaxnO76+/1R+fFIPPC6L5haFznA76JWbwbu3jeHnZx/b6LBqgH8v2G7uYlqQHcWVZhkLTMe/UQcR4ZLh3bl4WDeWbC+hYPMB5m8+QFGFD7fDYmDXbE7skcP4/h0OjYhqCTwuBw9fMIgrT+7F5Jkb+XDJTiwRKqrDm09jSWhET++8TG6d0JcfDGp8zk6Nsio/+8qqmhO+kYSq/MF6+99ai5bzDmFEnYgwtEcOQ3vkcNO4umfQt0T9O2Xx6KVD+PX5x/PBoh18vnIPy3eWUFLpw+N0HLZIVCCoBIJKv45tOLl3ey4b0YPjumRHfM1Vu0pJdzk4GMPFo4z4ssRMrAWTZAyjXm3SnFw1qhdXjQr1NZVU+lhfeJDK6iD+YOgTaqdsD72iUN25qLy62SscGsklENSIi1a2RCbJGEaY2qa7GN6rfUzOrdDsFQ6N5OJ2WjFZcjnVmL+AYSSBtukuzAoELUv/TmYiJpgkYxhJ4bjO2XiTrGCn0XQiMLJ39MogpTKTZAwjCbTNcNE2PXbrrBvxleF2cGLPnESHkRRMkjGMJHHBkK64mjtBx0gK/oAyoX+HRIeRFEySMYwkcd2Y3k1aUdRILg5LOH9IV7I85s4UTJIxjKTRMzeDccfkmbuZFOdyCDeekvyVyOPFJBnDSCJ/vuQE0pyte4Z4KnNYwpDuOU2akNtSmSRjGEkkr00aT1w+JC7LDxjR53Za/PVHQxMdRlIxz2TDSDLfP74zD507MCqJJs0ptElzEsWFSpOKQyDd5UiK3y/d5eDX5w2ka07iV6NMJibJGEYSumpUL/56+VAy0xw4m/AO6rSEDLeDxy8byqd3jSMnw42jhQ0qSHdZ3Htmf964+WS+f3xn3E6LLI+TLE/8k6rHaXFSfjt+fFKP+F44BUisS1GLyGbgIBAA/Ko6QkSGAJOANsBm4CpVLa3j2LuBmwlVdXpRVf/P3t4e+CeQbx9/uao2uHjDiBEjtKCgICq/U7JRVeZvLuLFmRtZvqOE8mo/TssiJ93FhUO7cuXJveiQlZboMI0mKDzo5efvLGXuxv34gkECjawE4LDA5bAY0as9T1w+hE7ZHgB2FldyyXOzOVBe3WKWE+jZPoMv7ptwqNJ1cUU1W/ZXcNDrxx8M8sB7y9hbVoUvENv3uDSnxcAu2bw1cVSLrLgsIgtUdUSTj49TkhmhqvtqbZsP3K+q00XkBqC3qj50xHGDgLeBkUA1MBW4VVXXi8ijwAFV/bOI/BJop6r/01AcLTHJqCpvz9/GM1+v50B5NZW+wFH1r2oK9I07Jo/7vz+AYzubDslUtL7wIH//djMfLd1JtT+Iy2kRtCv8OiwJbXNYnHdCF244pTf9O2UddY6yKj8Pf7iCj5fuxBuDJZ7TXQ56tE9n64GKmJy/No/T4t+3jWFQt7b17lNUXs3lz89h64GKmCVWj8tiaI8cXr5uZNgL/aWaVE0yJUCOqqqI9AA+U9WBRxx3GXC2qt5of/8QUKWqj4rIGuBUVd0lIl2Ab1R1QENxtLQkU+0Pcvfbi/hmzV4qwyhHIgIep4NnrjqR049N7QXGWrs9pV6W7wgtPaAKORkuju/alk7ZaUgYTWKz1u/jrrcWUVEdCOu505h0l0W6y8mTVwzl5N65XDZpNqt2H6Q6Rm/s6S4H93zvGG6Z0LfRfcur/PwmRonV47S4bmw+9505IOx1g1JRKiSZTUARoUKzz6vqCyIyG3hUVd8XkfuA36pq1hHHHQd8AIwGKoEvgQJVvVNEilU1x95PgKKa7484x0RgIkDPnj2Hb9myJVa/ZlwFg8rNrxUwa90+vBG+kD0uixeuGcF4Mxu5VSuv8vNOwTZemLmR4gofldUBInknECDd7aBtuouJ4/pw2Uk9aGMvYFdW5efS52azaV951O8g0l0Orh+bzy/OPjai42oSa3m1v9nJJt3lIK+Nm2evGs7g7vXfSbUUqZBkuqnqDhHpCHwO3AkUAk8BucCHwF2qelQ1ORG5EbgdKAdWELqTuad2krH3K1LVdg3F0ZLuZP76+VpemLGxyZ9CM9wOpt07nu7tMqIcmZFqVJW5mw7w8qxNFGwuotQbWpityh+kulYHkNshpLkceH0Bsj0uhvVqx/Vj8xndJ7fOu6fyKj83vVrA4m3FUblbgtCdw71n9g/rDqYuZVV+3py7hRdnbqKiyk95mCueQqglIJRc0rhlQh8uHd691cxnSvokc9jFRB4GylT18Vrb+gOvq+rIRo79E7BdVZ9tzc1lXl+A4b//PKIXyJFcDuHa0fk8dN7Axnc2WpXiimqW7yhl9e5SKqoDeH0BPC4HGW4HAzpnMahrW9plusM6V02f4e8/XkmVL0BT+9/TXRYdsjw8e9WwBvtgwhUMKt+u38c/5mxm8bbiQyueBjS0yqkQWhXWaQmVvgB5bdI4qXc7rhuTz7Ce7cJqkmxJkjrJiEgmYKnqQfvx58DvgIWqWigiFvAKoSTx9zqO72jv1xOYBoxS1WIReQzYX6vjv72q/qKhWFpKknlv4XYeen95s5IMQKbbwYKHzmyRo2GM5LKzuJJHpq5m6vLdWCJh39lkuh2kuRzcPK43N57SJ2b9HiUVPlbsLGFbUWiAgIiQ5rTIz83k+K7ZZKa17rUdm5tkYv3X6wRMsTO/E3hTVaeKyN0icoe9z3vAywAi0hWYrKrn2D97V0RyAR9wh6oW29v/DPzLbk7bAlwe498jaTz3zYZmJ5gany7bxcXDukflXIZRn6456Tz54xMpqfTxTsE2pizawfrCMhyW4LDk0IhIkdCdeps0Jyd0z+Ha0b04dUBHHDGe9NI2w8WYfnkxvUZrFtfmskRqCXcyXl+Agb+eSjBK/2XnndCFv105LDonM4wIBIPK5v3lbN5fjtcXxBIhy+Pk2M5Z5LYxc7qSSbLfyRhRVFrpw+2wIh5RVp8D5dVROY9hRMqyhD4d2tCng1miuKVruYO7jUa1jntYwzASySSZFJKd7jpsWGlztQ9zlJBhGEZTmSSTQjwuB73zMqNyrky3g9MGdIzKuQzDMOpjkkyKue3UfmREoUaSEur4NwzDiCWTZFJMNBKDyyH86KQeZo6MYRgxZ5JMivHYtZvSm7GglcthccNYswa5YRixZ5JMCrrvzAGM7J2LpwkzoD0ui2euGkaP9qZumWEYsWeSTApyWMIL1w5n3DEdSA+zyUsI3QU99eMTTYe/YRhxY5JMikpzOnj+muH87w+OpUtbT72DAdKcFmlOiwn9O/DubaM56/jOcY7UMIzWzMz4T2GWJVw7Jp9rRvdizsb9vDhjIyt2llJe7cdlWWSnO7lgSDeuHtWLzm09iQ7XMIxWqNXULhORvYSKaSZKHrCv0b3iy8QUvmSMy8QUnmSMCZIzrrpi6qWqTV7lsNUkmUQTkYLmFJmLBRNT+JIxLhNTeJIxJkjOuGIRk+mTMQzDMGLGJBnDMAwjZkySiZ8XEh1AHUxM4UvGuExM4UnGmCA544p6TKZPxjAMw4gZcydjGIZhxIxJMoZhGEbMmCQTIRH5u4gUisjyWtvai8jnIrLO/rddPcf2FJFpIrJKRFaKSL69XUTkjyKy1v7ZXUkS1xkislBEFovItyLSLx4xichp9jVrvrwicpH9s94iMldE1ovIP0UkopXXYhTTGyKyRkSW2+d3RRJTrOKqtc9TIlKWDDE197keo5ia9TxvTlz2fo+KyAr77/GUiIi9fbiILLOf64e2JyomEckQkU9EZLX9sz+HFYiqmq8IvoDxwDBgea1tjwK/tB//EniknmO/Ac60H7cBMuzH1wP/ACz7+45JEtda4Dj78e3AK/GKqdb+7YEDtWL6F/Bj+/Ek4LYkiOkcQuXhBHgr0phiFZe9bQTwGlCWDDE197keo5ia9TxvTlzAGGAW4LC/5gCn2j+bB4yyn1f/AX6QyJiADOA0ex83MDOcmCL6Q5qvQ/8J+Uf8x60ButiPuwBr6jhmIPBtPeebB/RLwrjWACfbj/8X+FM8Yjri+InAG/ZjITQb2Wl/Pxr4LJEx1fGze4E/xuv/r6G47DeIr+1jI04yMYqp2c/1GMTU7Od5U+Oyn8MLgHRCb+IFwHH2/qtr7XcF8HwiY6pjvyeBmxuLwTSXRUcnVd1lP94NdKpjn/5AsYi8JyKLROQxEampatkX+JGIFIjIf0TkmCSJ6ybgUxHZDlwDhHd73PyYavsxobsDgFygWFX99vfbgW4JjukQu5nsGmBqFGKKRlw/BT6sdY5kiCkWz/XmxhSL53lYcanqHEIfBHbZX5+p6ipCz+vttXaN23O9gZgOEZEc4Hzgy8YuaJJMlGkoxdc1LtwJjAPuB04C+gDX2T9LA7waKufwIvD3JInrXuAcVe0OvAz8JU4xASAiXYDBwGfRvG4MY3oWmKGqMxMdl4h0BS4Dno52LE2NyRbT53oTY4rp87yhuOz+n+OA7oSSyOkiMi7a149mTCLiJJSkn1LVjY1dxySZ6NhjP3lrnsSFdeyzHVisqhvtT+LvE2ovrfnZe/bjKcAJiY5LRDoAQ1R1rr3fPwm11cYjphqXA1NU1Wd/vx/IsZ/kEHoR7EhwTNjH/QboANwXhXiiEdeJQD9gvYhsBjJEZH2CY4LYPNebHFMMn+fhxvVD4DtVLVPVMkJ9L6MJPa+719ovns/1+mKq8QKwTlX/L5wLmiQTHR8CP7Ef/wT4oI595hN6g6ypZno6sNJ+/D5wmv14AqGOyETHVQS0FZH+9vYzgVV1HB+LmGpcQa1mDfuT19fApWEeH/OYAETkJuD7wBWqGoxCPM2OS1U/UdXOqpqvqvlAhapGPGoqmjHZ3if6z/XmxBSr53m4cW0FJoiI025unQCsspu0SkVklD2q7Np6jo9bTAAi8gegLXBP2FdsSgdXa/4i9ATdBfgIfSq7kVBfwZfAOuALoL297whgcq1jzwSWAsuAVwC3vT0H+MTePofQJ6tkiOuH9rYlhEag9YljTPmEPrlZR5yzD6HO4/XAO0BaEsTkBzYAi+2vX8f5/6/OuI44f1NGl8Xib9Ws53qMYmrW87w5cREanPE8oTfxlcBfap1zBLDcfm79DbtCS6JiInQ3pfb2muf6TY3FYcrKGIZhGDFjmssMwzCMmDFJxjAMw4gZk2QMwzCMmDFJxjAMw4gZk2QMwzCMmDFJxjAMw4gZk2SMlCMi94hIRhOOu84utxLpcReJyMBI9xOR34nI9yK9XgPnv05E/hat89U67+SauEXkgSYcn1+7nLxh1GaSjJGK7iFUHTZsdtHP64CIkwxwEaFq1RHtp6q/VtUvmnC9uFLVm1S1pvpExEnGMBpikoyR1EQk014oaYmEFgX7DaFE8bWIfG3v85xd1XeFiPy21rGbReQREVlIqJzICOANCS1OlV7P9f4soYXblorI4yIyBrgAeMw+rq+I3Cwi8+2Y3rUXc6prv1dE5FL7vGfYVa6XSWgxqbRaMf5WQotmLRORY8P8u+SLyFd2nF+KSE97+ysSWmRqtohsrHV9S0SeldCCU5+LyKe1fvaNiIyQ0CJU6Xb8bxx5hyIi94vIw/bj4fbvvwS4o9Y+DglV8p5vx3ZLOL+P0XKZJGMku7OBnao6RFUHAf8H7CS0eFJNDaxfaaiq7wmEai7VLrq4X1WHqerrhNbFuEpVh6pq5ZEXEpFcQiVGjlfVE4A/qOpsQvWefm4ftwF4T1VPUtUhhEps3FjPfjXn9RAq1/MjVR1MqPL1bbUuvU9VhwHPEaqGHY6ngVftON8Anqr1sy7AKcB5/Lds/cWEyqoMJFTOvnbBQwBU9ZdApR3/VY1c/2XgTvtvUNuNQImqnkSoqvfNItI7zN/JaIFMkjGS3TLgTPuOZJyqltSxz+X23coi4HgOb9r6ZwTXKgG8wEsicjFQUc9+g0RkpogsA66yr9mQAcAmVa0pBvkqoVULa9RUJV5AKBGEYzTwpv34NUJJpcb7qhq0m8Bq1gs5BXjH3r6bUKHRJpHQWiI5qjqj1vVrnAVcKyKLgbmEamVFa30kIwU5G9/FMBJHVdeKyDBCSxz/QUQOWyTJ/pR8P3CSqhaJyCuAp9Yu5RFcyy8iI4EzCFV6/imhqtRHegW4SFWXiMh1hJambY4q+98A0XlNVtV6HNG68Efwc/gHUU99Ox5xvTtVNW5rABnJzdzJGEnNHg1WYTd3PUZoDZ6DQJa9SzahRFIiIp2AHzRwutrH1XWtNkBbVf2U0EJWQ+o5LgvYZZdBr92sVN/51wD5EloMCkLNVdMbiDMcswmt8IgdQ2MLpc0CLrH7ZjpRf2L02b8XwB6go4jk2n1I5wGoajGh1VRr7p5q/w0+A26rOYeI9BeRzPB/LaOlMXcyRrIbTKgzPUioZPlthJqKporITlU9TUQWAauBbYTeTOvzCjBJRCqB0XX0y2QBH9h9KMJ/FyB7G3hRRO4idIfzEKGmoL32v1n17AeAqnpF5HrgHQktuDYfmBT5n+IwdwIvi8jP7Tiub2T/dwndoa0k9HdaSKh58EgvAEtFZKGqXiUivyO0tMIOQn/jGtcDfxcRBabV2j6ZUJPfQhERO7aLIvvVjJbElPo3jFZCRNqoapk9wGEeMNbunzGMmDF3MobRenxsd9q7gd+bBGPEg7mTMVolEZkCHDm09n+SocPablq7+4jNs1T1jrr2N4xkZpKMYRiGETNmdJlhGIYRMybJGIZhGDFjkoxhGIYRMybJGIZhGDHz/wEu29qN332s2wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "station_data.plot.scatter(\n", " \"start_station_longitude\", \"start_station_latitude\", s=\"started_trips\"\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### ipywidgets/HTML and ipyleaflet are useful tools to visualize data on maps" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "from ipyleaflet import Circle, Map, Marker, Polyline, basemap_to_tiles, basemaps\n", "from ipywidgets import HTML" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [], "source": [ "oslo_center = (\n", " 59.9127,\n", " 10.7461,\n", ") # NB ipyleaflet uses Lat-Long (i.e. y,x, when specifying coordinates)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "oslo_map = Map(center=oslo_center, zoom=13)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "5c97563205104507ad5c9d1760e7ef35", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Map(center=[59.9127, 10.7461], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zo…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "oslo_map" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "oslo_map.save(\n", " \"data/raw_oslo_map.html\"\n", ") # if interactive view is not possible inline try to open this in your browser" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can add different layers to our map with a marker function. The function is written such that for a given row in the dataframe (i.e. a given station), we add one marker to the map" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "def add_markers(row):\n", " center = row[\"start_station_latitude\"], row[\"start_station_longitude\"]\n", " marker = Circle(\n", " location=center, radius=int(0.04 * row[\"started_trips\"]), color=\"green\"\n", " )\n", " oslo_map.add_layer(marker)" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "start_station_id\n", "377 None\n", "378 None\n", "380 None\n", "381 None\n", "382 None\n", " ... \n", "2306 None\n", "2307 None\n", "2308 None\n", "2309 None\n", "2315 None\n", "Length: 254, dtype: object" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "station_data.apply(add_markers, axis=1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise\n", "\n", "Note: If you have issues with installing ipyleaflet or ipywidget with pip, just use pl.scatter() or pl.plot()\n", "\n", "1) Create the DataFrame station_data as described in the lecture\n", "\n", "2) Make a similar plot of the Oslo map with the most popular end-stations as red circles\n", "\n", "3) Add the following line as the last line in your add_markers-function: marker.popup = HTML(f\"{row['start_station_name']} Trips started: {row['started_trips']}\") . You can also add newlines within the string with the HTML command for newline\n", "\n", "4) Try to make an Oslo map showing both started trips and ended trips in the same map\n", "\n", "5) Make a map showing which stations are most popular going from Stensgata" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FremontBridge.csv\n", "bike-counter-locations-oslo-municipality.csv\n", "car-counter-locations-oslo-municipality.csv\n", "eustat_area.tsv\n", "eustat_population.tsv\n", "nor_population2022.csv\n", "oslo_bike_2021_09.csv\n", "oslo_bike_september_2022.csv\n", "pressure.csv\n", "pressure.png\n", "raw_oslo_map.html\n", "state-abbrevs.csv\n", "state-areas.csv\n", "state-population.csv\n", "used_car_sales.csv\n" ] } ], "source": [ "ls data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%reset\n", "import pandas as pd\n", "import pylab as pl\n", "\n", "trip_csv = \"data/oslo_bike_2021_09.csv\"\n", "trips = pd.read_csv(trip_csv)\n", "station_data = trips.groupby(\n", " [\n", " \"start_station_id\",\n", " \"start_station_longitude\",\n", " \"start_station_latitude\",\n", " \"start_station_name\",\n", " ]\n", ").count()\n", "station_data = station_data.reset_index()\n", "station_data = station_data.drop(columns=station_data.columns[-7:])\n", "station_data = station_data.rename(columns={\"started_at\": \"started_trips\"})\n", "station_data = station_data.set_index(\"start_station_id\")\n", "station_data[\"ended_trips\"] = trips[\"end_station_id\"].value_counts()\n", "\n", "from ipyleaflet import Circle, Map, Marker, Polyline, basemap_to_tiles, basemaps\n", "from ipywidgets import HTML\n", "\n", "oslo_center = (\n", " 59.9127,\n", " 10.7461,\n", ") # NB ipyleaflet uses Lat-Long (i.e. y,x, when specifying coordinates)\n", "oslo_map = Map(center=oslo_center, zoom=13)\n", "\n", "\n", "def add_markers(row):\n", " center = row[\"start_station_latitude\"], row[\"start_station_longitude\"]\n", " marker = Circle(\n", " location=center, radius=int(0.04 * row[\"started_trips\"]), color=\"green\"\n", " )\n", " marker2 = Circle(\n", " location=center, radius=int(0.04 * row[\"ended_trips\"]), color=\"red\"\n", " )\n", " oslo_map.add_layer(marker)\n", " oslo_map.add_layer(marker2)\n", " marker.popup = HTML(\n", " f\"{row['start_station_name']}
Trips started: {row['started_trips']}\"\n", " )\n", "\n", "\n", "station_data.apply(add_markers, axis=1)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "642d4dd0be94411cae2b201f6818b50c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Map(center=[59.9127, 10.7461], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zo…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "oslo_map" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.3" } }, "nbformat": 4, "nbformat_minor": 4 }