{ "cells": [ { "cell_type": "markdown", "id": "fd2cf869-70e3-4ae0-b72e-981d8e613766", "metadata": {}, "source": [ "# Data visualisation in Python\n", "\n", "Making sense of data is complicated.\n", "We can often process patterns and trends in large amounts of data much more easily when presented in a visual way.\n", "\n", "Take for example, this csv file. It's a lot of numbers!" ] }, { "cell_type": "code", "execution_count": 12, "id": "dfa48b87-968f-4737-b75b-0ac9662e9cfa", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x,s,c\n", "0.0,0.0,1.0\n", "0.06346651825433926,0.0634239196565645,0.9979866764718844\n", "0.12693303650867852,0.12659245357374926,0.9919548128307953\n", "0.1903995547630178,0.18925124436041021,0.9819286972627067\n", "0.25386607301735703,0.2511479871810792,0.9679487013963562\n", "0.3173325912716963,0.31203344569848707,0.9500711177409454\n", "0.3807991095260356,0.3716624556603276,0.9283679330160726\n", "0.4442656277803748,0.42979491208917164,0.9029265382866212\n", "0.5077321460347141,0.4861967361004687,0.8738493770697849\n" ] } ], "source": [ "!head somedata.csv" ] }, { "cell_type": "markdown", "id": "ce50b623-288f-43d8-8f37-79efb11740fc", "metadata": {}, "source": [ "We can read CSVs into pandas, which let us view it as a nice table and perform operations,\n", "but looking at the table doesn't give us a lot more insight:" ] }, { "cell_type": "code", "execution_count": 4, "id": "71319026-3512-4bb1-a8d0-92f40fc90880", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | s | \n", "c | \n", "
---|---|---|
x | \n", "\n", " | \n", " |
0.000000 | \n", "0.000000e+00 | \n", "1.000000 | \n", "
0.063467 | \n", "6.342392e-02 | \n", "0.997987 | \n", "
0.126933 | \n", "1.265925e-01 | \n", "0.991955 | \n", "
0.190400 | \n", "1.892512e-01 | \n", "0.981929 | \n", "
0.253866 | \n", "2.511480e-01 | \n", "0.967949 | \n", "
... | \n", "... | \n", "... | \n", "
6.029319 | \n", "-2.511480e-01 | \n", "0.967949 | \n", "
6.092786 | \n", "-1.892512e-01 | \n", "0.981929 | \n", "
6.156252 | \n", "-1.265925e-01 | \n", "0.991955 | \n", "
6.219719 | \n", "-6.342392e-02 | \n", "0.997987 | \n", "
6.283185 | \n", "-2.449294e-16 | \n", "1.000000 | \n", "
100 rows × 2 columns
\n", "